909 research outputs found

    Polymorphism in seed endosperm proteins (gliadins and glutenins) of Turkish cultivated einkorn wheat [Triticum monococcum ssp. monococcum] landraces

    Get PDF
    The objective of this study is the analysis of polymorphism in seed endosperm proteins (gliadins and glutenins) of Turkish cultivated einkorn wheat [Triticum monococcum ssp. monococcum] landraces. The genetic diversity of high-molecular-weight (HMW) glutenin subunits and the gliadin proteins in 10 landrace populations of cultivated einkorn wheat, originating from Turkey, was investigated using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and ammonium lactic acid polyacrylamide gel electrophoresis (A-PAGE), respectively. For glutenins, the mean number of alleles, the mean number of effective alleles, the mean value of genetic diversity and the mean value of average genetic diversity were detected as 3.50, 2.98, 0.65 and 0.28, respectively. The genetic differentiation was 0.57, while gene flow was 0.19 between populations. For gliadins, the mean number of alleles, the mean number of effective alleles, the mean value of total genetic diversity and the genetic diversity within population were detected as 2.00, 1.21, 0.17 and 0.15, respectively. The genetic differentiation was 0.08, whereas gene flow was 6.15 between populations. STRUCTURE is a software package program for population genetic analysis, was used to infer population structures of landraces populations. The optimum value for K was obtained as 10. Considering the high number of proteins and genetic variation, and increased interest in organic products, the farming of einkorn wheat should be supported and conservation of germplasm in landraces should be maintained as important genetic resources. The landraces germplasm should be conserved for future crop improvement processes

    A Jupiter-mass planet around the K0 giant HD 208897

    Full text link
    For over 10 years, we have carried out a precise radial velocity (RV) survey to find substellar companions around evolved G,K-type stars to extend our knowledge of planet formation and evolution. We performed high precision RV measurements for the giant star HD 208897 using an iodine (I2) absorption cell. The measurements were made at T\"UB\.ITAK National Observatory (TUG, RTT150) and Okayama Astrophysical Observatory (OAO). For the origin of the periodic variation seen in the RV data of the star, we adopted a Keplerian motion caused by an unseen companion. We found that the star hosts a planet with a minimum mass of m2sini=1.40MJ, which is relatively low compared to those of known planets orbiting evolved intermediate-mass stars. The planet is in a nearly circular orbit with a period of P=353 days at about 1 AU distance from the host star. The star is metal rich and located at the early phase of ascent along the red giant branch. The photometric observations of the star at Ankara University Kreiken Observatory (AUKR) and the HIPPARCOS photometry show no sign of variation with periods associated with the RV variation. Neither bisector velocity analysis nor analysis of the Ca II and Halpha lines shows any correlation with the RV measurements

    Exploring Blockchain Adoption Supply Chains: Opportunities and Challenges

    Get PDF
    Acquisition Management / Grant technical reportAcquisition Research Program Sponsored Report SeriesSponsored Acquisition Research & Technical ReportsIn modern supply chains, acquisition often occurs with the involvement of a network of organizations. The resilience, efficiency, and effectiveness of supply networks are crucial for the viability of acquisition. Disruptions in the supply chain require adequate communication infrastructure to ensure resilience. However, supply networks do not have a shared information technology infrastructure that ensures effective communication. Therefore decision-makers seek new methodologies for supply chain management resilience. Blockchain technology offers new decentralization and service delegation methods that can transform supply chains and result in a more flexible, efficient, and effective supply chain. This report presents a framework for the application of Blockchain technology in supply chain management to improve resilience. In the first part of this study, we discuss the limitations and challenges of the supply chain system that can be addressed by integrating Blockchain technology. In the second part, the report provides a comprehensive Blockchain-based supply chain network management framework. The application of the proposed framework is demonstrated using modeling and simulation. The differences in the simulation scenarios can provide guidance for decision-makers who consider using the developed framework during the acquisition process.Approved for public release; distribution is unlimited

    Marginally low mass ratio close binary system V1191 Cyg

    Get PDF
    In this study, we present photometric and spectroscopic variations of the extremely small mass ratio (q0.1q\simeq 0.1) late-type contact binary system \astrobj{V1191 Cyg}. The parameters for the hot and cooler companions have been determined as MhM_\textrm{h} = 0.13 (1) MM_{\odot}, McM_\textrm{c} = 1.29 (8) MM_{\odot}, RhR_\textrm{h} = 0.52 (15) RR_{\odot}, RcR_\textrm{c} = 1.31 (18) RR_{\odot}, LhL_\textrm{h} = 0.46 (25) LL_{\odot}, LcL_\textrm{c} = 2.71 (80) LL_{\odot}, the separation of the components is aa= 2.20(8) RR_{\odot} and the distance of the system is estimated as 278(31) pc. Analyses of the times of minima indicates a period increase of dPdt=1.3(1)×106\frac{dP}{dt}=1.3(1)\times 10^{-6} days/yr that reveals a very high mass transfer rate of dMdt=2.0(4)×107\frac{dM}{dt}=2.0(4)\times 10^{-7}MM_{\odot}/yr from the less massive component to the more massive one. New observations show that the depths of the minima of the light curve have been interchanged.Comment: Accepted for publication in New Astronomy, 16 pages, 2 figures, 4 table

    The impact of public perception of earthquake risk on Istanbul's housing market

    Get PDF
    This paper examines the impact of public perception of earthquake risk on Istanbul's housing market by investigating the spatial distribution of the average house values and the changes in average house prices in Istanbul between 1995 and 2000. Soil type and distance to the fault lines in the Sea of Marmara are used as proxies for public perception of earthquake risk. The results of regression analysis show that distance from fault lines is an important factor in explaining house values and its impact on house values increased after the 1999 Kocaeli earthquake. Furthermore, there is a quadratic relationship between soil type and house values. However, none of the measures of earthquake risk significantly affect the change in house values. These findings suggest that public perception of earthquake risk enhanced and the public information about earthquake hazard had significant impact on house values

    Database for CO2 separation performances of MOFs based on computational materials screening

    Get PDF
    Metal-organic frameworks (MOFs) are potential adsorbents for CO2 capture. Because thousands of MOFs exist, computational studies become very useful in identifying the top performing materials for target applications in a time-effective manner. In this study, molecular simulations were performed to screen the MOF database to identify the best materials for CO2 separation from flue gas (CO2/N-2) and landfill gas (CO2/CH4) under realistic operating conditions. We validated the accuracy of our computational approach by comparing the simulation results for the CO2 uptakes, CO2/N-2 and CO2/CH4 selectivities of various types of MOFs with the available experimental data. Binary CO2/N-2 and CO2/CH4 mixture adsorption data were then calculated for the entire MOF database. These data were then used to predict selectivity, working capacity, regenerability, and separation potential of MOFs. The top performing MOF adsorbents that can separate CO2/N-2 and CO2/CH4 with high performance were identified. Molecular simulations for the adsorption of a ternary CO2/N-2/CH4 mixture were performed for these top materials to provide a more realistic performance assessment of MOF adsorbents. The structure-performance analysis showed that MOFs with Delta Q(st)(0) > 30 kJ/mol, 3.8 angstrom 1 g/cm(3) are the best candidates for selective separation of CO2 from flue gas and landfill gas. This information will be very useful to design novel MOFs exhibiting high CO2 separation potentials. Finally, an online, freely accessible database https://cosmoserc.ku.edu.tr was established, for the first time in the literature, which reports all of the computed adsorbent metrics of 3816 MOFs for CO2/N-2, CO2/CH4, and CO2/N-2/CH4 separations in addition to various structural properties of MOFs.European Research Counci

    The Impact of Human Assurance on Satellite Operations

    Get PDF
    Mission assurance is a method to guarantee mission success against a known set of risks; mission assurance is generally represented as a probability against a threshold of acceptable performance. Human assurance can be considered as the likelihood of acceptable operator performance given a set of conditions that include the operator, the system, and the environment. Standard mission assurance models tend to assume a qualified crew, but do not include other aspects of the internal or external environment that may impact the reliability of the human operator. A human assurance model can be created that allows the exploration of the variability in operator performance due to the likelihood of different risks. An example human assurance model has been created for the detection of adverse trending satellite data and the need to modify the existing mission schedule to address the satellite emergency. The model leverages the Human Viewpoint framework to capture the human-focused data within the mission context. From this data, sources of risk can be identified for the socio-technical system and a risk framework developed. The resulting risk model allows exploration of the characteristics of both the operator and the operating environment, as well as the impact of organizational mitigations, on the likelihood that the socio-technical system will meet mission assurance thresholds. The method provided can be used to identify the limitations of human system performance against the established criteria

    Degradation analysis of tribologically loaded carbon nanotubes and carbon onions

    Get PDF
    Coating laser-patterned stainless-steel surfaces with carbon nanotubes (CNT) or carbon onions (CO) forms a tribological system that provides effective solid lubrication. Lubricant retention represents the fundamental mechanism of this system, as storing the particles inside the pattern prevents lubricant depletion in the contact area. In previous works, we used direct laser interference patterning to create line patterns with three different structural depths on AISI 304 stainless-steel platelets. Electrophoretic deposition subsequently coated the patterned surfaces with either CNTs or COs. Ball-on-disc friction tests were conducted to study the effect of structural depth on the solid lubricity of as-described surfaces. The results demonstrated that the shallower the textures, the lower the coefficient of friction, regardless of the applied particle type. This follow-up study examines the carbon nanoparticles’ structural degradation after friction testing on substrates patterned with different structural depths (0.24, 0.36, and 0.77 µm). Raman characterization shows severe degradation of both particle types and is used to classify their degradation state within Ferrari’s three-stage amorphization model. It was further shown that improving CNT lubricity translates into increasing particle defectivity. This is confirmed by electron microscopy, which shows decreasing crystalline domains. Compared to CNTs, COderived tribofilms show even more substantial structural degradation

    Selenium- and/or copper-substituted hydroxyapatite: A bioceramic substrate for biomedical applications

    Get PDF
    Atomic substitution or doping of a bioceramic material hydroxyapatite (HA) with specific ions is an appealing approach for improving its biocompatibility and activity, as well as imparting antibacterial properties. In this study, selenium- and/or copper-substituted hydroxyapatite powders were synthesized by an aqueous precipitation method and using the freeze-drying technique. The molar concentrations of constituents were calculated based on the proposed mechanism whereby selenium (Se4+) ions partially substitute phosphorus (P5+) sites, and copper (Cu2+) ions partially substitute (Ca2+) sites in the HA lattice. Dried precipitated samples were characterized using Inductively coupled plasma optical emission spectroscopy (ICP-OES), X-ray diffraction analysis (XRD), Fourier-transform infrared spectroscopy (FTIR) and Field-emission scanning electron microscopy with energy dispersive X-ray spectroscopy (FESEM-EDX). Accordingly, substitution of Se4+ and/or Cu2+ ions took place in the crystal lattice of HA without the formation of any impurities. The presence of sulphur (S2-) ions in the hydroxyapatite was detected by ICP-OES in all samples with copper substituted in the lattice. The cytotoxicity of the powders on osteoblastic (MC3T3-E1) cells was evaluated in vitro. Selenium substituted hydroxyapatite (SeHA), at the concentration (200 μg/mL), demonstrated higher populations of the live cells than that of control (cells without powders), suggesting that selenium may stimulate the proliferation of these cells. In addition, the copper substituted hydroxyapatite (CuHA) and the selenium and copper substituted hydroxyapatite (SeCuHA) at the concentrations (200 and 300 μg/mL) and (200 μg/mL), respectively demonstrated better results than the unsubstituted HA. Antimicrobial activity was assessed using a well-diffusion method against Streptococcus mutans and Candida albicans, and superior results has obtained with SeCuHA samples. Presented findings imply that selenium and/or copper substituted modified hydroxyapatite nanoparticles, may be an attractive antimicrobial and cytocompatible substrate to be considered for use in a range of translational applications

    Origin of Native Driving Force in Protein Folding

    Full text link
    We derive an expression with four adjustable parameters that reproduces well the 20x20 Miyazawa-Jernigan potential matrix extracted from known protein structures. The numerical values of the parameters can be approximately computed from the surface tension of water, water-screened dipole interactions between residues and water and among residues, and average exposures of residues in folded proteins.Comment: LaTeX file, Postscript file; 4 pages, 1 figure (mij.eps), 2 table
    corecore