914 research outputs found
A wideband linear tunable CDTA and its application in field programmable analogue array
This document is the Accepted Manuscript version of the following article: Hu, Z., Wang, C., Sun, J. et al. ‘A wideband linear tunable CDTA and its application in field programmable analogue array’, Analog Integrated Circuits and Signal Processing, Vol. 88 (3): 465-483, September 2016. Under embargo. Embargo end date: 6 June 2017. The final publication is available at Springer via https://link.springer.com/article/10.1007%2Fs10470-016-0772-7 © Springer Science+Business Media New York 2016In this paper, a NMOS-based wideband low power and linear tunable transconductance current differencing transconductance amplifier (CDTA) is presented. Based on the NMOS CDTA, a novel simple and easily reconfigurable configurable analogue block (CAB) is designed. Moreover, using the novel CAB, a simple and versatile butterfly-shaped FPAA structure is introduced. The FPAA consists of six identical CABs, and it could realize six order current-mode low pass filter, second order current-mode universal filter, current-mode quadrature oscillator, current-mode multi-phase oscillator and current-mode multiplier for analog signal processing. The Cadence IC Design Tools 5.1.41 post-layout simulation and measurement results are included to confirm the theory.Peer reviewedFinal Accepted Versio
Influence of Gelatin Source and Bloom Number on Gelatin Methacryloyl Hydrogels Mechanical and Biological Properties for Muscle Regeneration
Approximately half of an adult human’s body weight is made up of muscles. Thus, restoring the functionality and aesthetics of lost muscle tissue is critical. The body is usually able to repair minor muscle injuries. However, when volumetric muscle loss occurs due to tumour extraction, for instance, the body will form fibrous tissue instead. Gelatin methacryloyl (GelMA) hydrogels have been applied for drug delivery, tissue adhesive, and various tissue engineering applications due to their tuneable mechanical properties. Here, we have synthesised GelMA from different gelatin sources (i.e., porcine, bovine, and fish) with varying bloom numbers, which refers to the gel strength, and investigated for the influence of the source of gelatin and the bloom number on biological activities and mechanical properties. The results indicated that the source of the gelatin and variable bloom numbers have an impact on GelMA hydrogel properties. Furthermore, our findings established that the bovine-derived gelatin methacryloyl (B-GelMA) has better mechanical properties than the other varieties composed of porcine and fish with 60 kPa, 40 kPa, and 10 kPa in bovine, porcine, and fish, respectively. Additionally, it showed a noticeably greater swelling ratio (SR) ~1100% and a reduced rate of degradation, improving the stability of hydrogels and giving cells adequate time to divide and proliferate to compensate for muscle loss. Furthermore, the bloom number of gelatin was also proven to influence the mechanical properties of GelMA. Interestingly, although GelMA made of fish had the lowest mechanical strength and gel stability, it demonstrated excellent biological properties. Overall, the results emphasise the importance of gelatin source and bloom number, allowing GelMA hydrogels to have a wide range of mechanical and excellent biological properties and making them suitable for various muscle tissue regeneration applications
Specialized dynamical properties of promiscuous residues revealed by simulated conformational ensembles
The ability to interact with different partners is one of the most important features in proteins. Proteins that bind a large number of partners (hubs) have been often associated with intrinsic disorder. However, many examples exist of hubs with an ordered structure, and evidence of a general mechanism promoting promiscuity in ordered proteins is still elusive. An intriguing hypothesis is that promiscuous binding sites have specific dynamical properties, distinct from the rest of the interface and pre-existing in the protein isolated state. Here, we present the first comprehensive study of the intrinsic dynamics of promiscuous residues in a large protein data set. Different computational methods, from coarse-grained elastic models to geometry-based sampling methods and to full-atom Molecular Dynamics simulations, were used to generate conformational ensembles for the isolated proteins. The flexibility and dynamic correlations of interface residues with a different degree of binding promiscuity were calculated and compared considering side chain and backbone motions, the latter both on a local and on a global scale. The study revealed that (a) promiscuous residues tend to be more flexible than nonpromiscuous ones, (b) this additional flexibility has a higher degree of organization, and (c) evolutionary conservation and binding promiscuity have opposite effects on intrinsic dynamics. Findings on simulated ensembles were also validated on ensembles of experimental structures extracted from the Protein Data Bank (PDB). Additionally, the low occurrence of single nucleotide polymorphisms observed for promiscuous residues indicated a tendency to preserve binding diversity at these positions. A case study on two ubiquitin-like proteins exemplifies how binding promiscuity in evolutionary related proteins can be modulated by the fine-tuning of the interface dynamics. The interplay between promiscuity and flexibility highlighted here can inspire new directions in protein-protein interaction prediction and design methods. © 2013 American Chemical Society
Absolute properties of the binary system BB Pegasi
We present a ground based photometry of the low-temperature contact binary BB
Peg. We collected all times of mid-eclipses available in literature and
combined them with those obtained in this study. Analyses of the data indicate
a period increase of 3.0(1) x 10^{-8} days/yr. This period increase of BB Peg
can be interpreted in terms of the mass transfer 2.4 x 10^{-8} Ms yr^{-1} from
the less massive to the more massive component. The physical parameters have
been determined as Mc = 1.42 Ms, Mh = 0.53 Ms, Rc = 1.29 Rs, Rh = 0.83 Rs, Lc =
1.86 Ls, and Lh = 0.94 Ls through simultaneous solution of light and of the
radial velocity curves. The orbital parameters of the third body, that orbits
the contact system in an eccentric orbit, were obtained from the period
variation analysis. The system is compared to the similar binaries in the
Hertzsprung-Russell and Mass-Radius diagram.Comment: 17 pages, 3 figures, accepted for Astronomical Journa
Composite structural motifs of binding sites for delineating biological functions of proteins
Most biological processes are described as a series of interactions between
proteins and other molecules, and interactions are in turn described in terms
of atomic structures. To annotate protein functions as sets of interaction
states at atomic resolution, and thereby to better understand the relation
between protein interactions and biological functions, we conducted exhaustive
all-against-all atomic structure comparisons of all known binding sites for
ligands including small molecules, proteins and nucleic acids, and identified
recurring elementary motifs. By integrating the elementary motifs associated
with each subunit, we defined composite motifs which represent
context-dependent combinations of elementary motifs. It is demonstrated that
function similarity can be better inferred from composite motif similarity
compared to the similarity of protein sequences or of individual binding sites.
By integrating the composite motifs associated with each protein function, we
define meta-composite motifs each of which is regarded as a time-independent
diagrammatic representation of a biological process. It is shown that
meta-composite motifs provide richer annotations of biological processes than
sequence clusters. The present results serve as a basis for bridging atomic
structures to higher-order biological phenomena by classification and
integration of binding site structures.Comment: 34 pages, 7 figure
SS Ari: a shallow-contact close binary system
Two CCD epochs of light minimum and a complete R light curve of SS Ari are
presented. The light curve obtained in 2007 was analyzed with the 2003 version
of the W-D code. It is shown that SS Ari is a shallow contact binary system
with a mass ratio and a degree of contact factor f=9.4(\pm0.8%). A
period investigation based on all available data shows that there may exist two
distinct solutions about the assumed third body. One, assuming eccentric orbit
of the third body and constant orbital period of the eclipsing pair results in
a massive third body with and P_3=87.00.278M_{\odot}$. Both of the cases
suggest the presence of an unseen third component in the system.Comment: 28 pages, 9 figures and 5 table
Diversifying search in bee algorithms for numerical optimisation
© Springer Nature Switzerland AG 2018. Swarm intelligence offers useful instruments for developing collective behaviours to solve complex, ill-structured and large-scale problems. Efficiency in collective behaviours depends on how to harmonise the individual contributions so that a complementary collective effort can be achieved to offer a useful solution. The harmonisation helps blend diversification and intensification suitably towards efficient collective behaviours. In this study, two renown honeybees-inspired algorithms were analysed with respect to the balance of diversification and intensification and a hybrid algorithm is proposed to improve the efficiency accordingly. The proposed hybrid algorithm was tested with solving well-known highly dimensional numerical optimisation (benchmark) problems. Consequently, the proposed hybrid algorithm has demonstrated outperforming the two original bee algorithms in solving hard numerical optimisation benchmarks
Turner syndrome and associated problems in turkish children: A multicenter study
Objective: Turner syndrome (TS) is a chromosomal disorder caused by complete or partial X chromosome monosomy that manifests various clinical features depending on the karyotype and on the genetic background of affected girls. This study aimed to systematically investigate the key clinical features of TS in relationship to karyotype in a large pediatric Turkish patient population. Methods: Our retrospective study included 842 karyotype-proven TS patients aged 0-18 years who were evaluated in 35 different centers in Turkey in the years 2013-2014. Results: The most common karyotype was 45,X (50.7%), followed by 45,X/46,XX (10.8%), 46,X,i(Xq) (10.1%) and 45,X/46,X,i(Xq) (9.5%). Mean age at diagnosis was 10.2±4.4 years. The most common presenting complaints were short stature and delayed puberty. Among patients diagnosed before age one year, the ratio of karyotype 45,X was significantly higher than that of other karyotype groups. Cardiac defects (bicuspid aortic valve, coarctation of the aorta and aortic stenosi) were the most common congenital anomalies, occurring in 25% of the TS cases. This was followed by urinary system anomalies (horseshoe kidney, double collector duct system and renal rotation) detected in 16.3%. Hashimoto’s thyroiditis was found in 11.1% of patients, gastrointestinal abnormalities in 8.9%, ear nose and throat problems in 22.6%, dermatologic problems in 21.8% and osteoporosis in 15.3%. Learning difficulties and/or psychosocial problems were encountered in 39.1%. Insulin resistance and impaired fasting glucose were detected in 3.4% and 2.2%, respectively. Dyslipidemia prevalence was 11.4%. Conclusion: This comprehensive study systematically evaluated the largest group of karyotype-proven TS girls to date. The karyotype distribution, congenital anomaly and comorbidity profile closely parallel that from other countries and support the need for close medical surveillance of these complex patients throughout their lifespan. © Journal of Clinical Research in Pediatric Endocrinology
- …