132 research outputs found

    Vitamin E, γ-tocopherol, diminishes ex vivo basophil response to dust mite allergen

    Get PDF
    Epidemiologic studies suggest that dietary vitamin E is a candidate intervention for atopic disease. We used in vitro and ex vivo exposures to test the hypothesis that the most common dietary isoform of vitamin E, γ-tocopherol (γT), could suppress FcεRI-mediated basophil activation

    GSTM1 modulation of IL-8 expression in human bronchial epithelial cells exposed to ozone

    Get PDF
    Exposure to the major air pollutant ozone can aggravate asthma and other lung diseases. Our recent study in human volunteers has shown that the glutathione S-transferase mu 1 (GSTM1) null genotype is associated with increased airway neutrophilic inflammation induced by inhaled ozone. The aim of this study was to examine the effect of GSTM1 modulation on interleukin 8 (IL-8) production in ozone-exposed human bronchial epithelial cells (BEAS-2B) and the underlying mechanisms. Exposure of BEAS-2B cells to 0.4 ppm ozone for 4 h significantly increased IL-8 release with a modest reduction in intracellular reduced glutathione (GSH). Ozone exposure induced reactive oxygen species (ROS) production and NFκB activation. Pharmacological inhibition of NFκB activation or mutation of IL-8 promoter at κB-binding site significantly blocked ozone-induced IL-8 production or IL-8 transcriptional activity, respectively. Knockdown of GSTM1 in BEAS-2B cells enhanced ozone-induced NFκB activation and IL-8 production. Consistently, ozone-induced overt increase in IL-8 production was detected in GSTM1-null primary human bronchial epithelial cells. In addition, supplementation with reduced GSH inhibited ozone-induced ROS production, NFκB activation and IL-8 production. Taken together, GSTM1 deficiency enhances ozone-induced IL-8 production, which is mediated by generated ROS and subsequent NFκB activation in human bronchial epithelial cells

    Interleukin-17D and Nrf2 mediate initial innate immune cell recruitment and restrict MCMV infection.

    Get PDF
    Innate immune cells quickly infiltrate the site of pathogen entry and not only stave off infection but also initiate antigen presentation and promote adaptive immunity. The recruitment of innate leukocytes has been well studied in the context of extracellular bacterial and fungal infection but less during viral infections. We have recently shown that the understudied cytokine Interleukin (IL)-17D can mediate neutrophil, natural killer (NK) cell and monocyte infiltration in sterile inflammation and cancer. Herein, we show that early immune cell accumulation at the peritoneal site of infection by mouse cytomegalovirus (MCMV) is mediated by IL-17D. Mice deficient in IL-17D or the transcription factor Nuclear factor (erythroid-derived 2)-like 2 (Nrf2), an inducer of IL-17D, featured an early decreased number of innate immune cells at the point of viral entry and were more susceptible to MCMV infection. Interestingly, we were able to artificially induce innate leukocyte infiltration by applying the Nrf2 activator tert-butylhydroquinone (tBHQ), which rendered mice less susceptible to MCMV infection. Our results implicate the Nrf2/IL-17D axis as a sensor of viral infection and suggest therapeutic benefit in boosting this pathway to promote innate antiviral responses

    A proof-of-concept clinical study examining the NRF2 activator sulforaphane against neutrophilic airway inflammation

    Get PDF
    Abstract Sulforaphane (SFN), a naturally occurring isothiocyanate found in cruciferous vegetables, is implicated as a possible therapy for airway inflammation via induction of the transcription factor NF-E2-related factor 2 (NRF2). In this proof-of-concept clinical study, we show that supplementation of SFN with broccoli sprout homogenate in healthy human subjects did not induce expression of antioxidant genes or protect against neutrophilic airway inflammation in an ozone-exposure model. Therefore, dietary sulforaphane supplementation is not a promising candidate for larger scale clinical trials targeting airway inflammation. Trial registration: NCT01625130 . Registered 19 June, 2012

    Bronchoscopy-Derived Correlates of Lung Injury following Inhalational Injuries: A Prospective Observational Study

    Get PDF
    Background: Acute lung injury (ALI) is a major factor determining morbidity following burns and inhalational injury. In experimental models, factors potentially contributing to ALI risk include inhalation of toxins directly causing cell damage; inflammation; and infection. However, few studies have been done in humans. Methods: We carried out a prospective observational study of patients admitted to the NC Jaycees Burn Center who were intubated and on mechanical ventilation for burns and suspected inhalational injury. Subjects were enrolled over an 8-month period and followed till discharge or death. Serial bronchial washings from clinically-indicated bronchoscopies were collected and analyzed for markers of cell injury and inflammation. These markers were compared with clinical markers of ALI. Results: Forty-three consecutive patients were studied, with a spectrum of burn and inhalation injury severity. Visible soot at initial bronchoscopy and gram negative bacteria in the lower respiratory tract were associated with ALI in univariate analyses. Subsequent multivariate analysis also controlled for % body surface area burns, infection, and inhalation severity. Elevated IL-10 and reduced IL-12p70 in bronchial washings were statistically significantly associated with ALI. Conclusions: Independently of several factors including initial inhalational injury severity, infection, and extent of surface burns, high early levels of IL-10 and low levels of IL-12p70 in the central airways are associated with ALI in patients intubated after acute burn/inhalation injury. Lower airway secretions can be collected serially in critically ill burn/inhalation injury patients and may yield important clues to specific pathophysiologic pathways
    corecore