10 research outputs found

    Lower objectively measured physical activity is linked with perceived risk of hypoglycemia in type 1 diabetes

    Get PDF
    Aims Compare physical activity (PA) levels in adults with and without type 1 diabetes and identify diabetes-specific barriers to PA. Methods Forty-four individuals with type 1 diabetes and 77 non-diabetic controls in the Coronary Artery Calcification in Type 1 Diabetes study wore an accelerometer for 2 weeks. Moderate-to-vigorous physical activity (MVPA) was compared by diabetes status using multiple linear regression. The Barriers to Physical Activity in Type 1 Diabetes questionnaire measured diabetes-specific barriers to PA, and the Clarke hypoglycemia awareness questionnaire measured hypoglycemia frequency. Results Individuals with type 1 diabetes engaged in less MVPA, fewer bouts of MVPA, and spent less time in MVPA bouts per week than individuals without diabetes (all p  0.05). The most common diabetes-specific barrier to PA was risk of hypoglycemia. Individuals with diabetes reporting barriers spent less time in MVPA bouts per week than those not reporting barriers (p = 0.047). Conclusions Individuals with type 1 diabetes engage in less MVPA than those without diabetes despite similar self-reported levels, with the main barrier being perceived risk of hypoglycemia. Adults with type 1 diabetes require guidance to meet current PA guidelines and reduce cardiovascular risk

    Opioid medication use and blood DNA methylation:epigenome-wide association meta-analysis

    Get PDF
    Aim: To identify differential methylation related to prescribed opioid use. Methods: This study examined whether blood DNA methylation, measured using Illumina arrays, differs by recent opioid medication use in four population-based cohorts. We meta-analyzed results (282 users; 10,560 nonusers) using inverse-variance weighting. Results: Differential methylation (false discovery rate \u3c0.05) was observed at six CpGs annotated to the following genes: KIAA0226, CPLX2, TDRP, RNF38, TTC23 and GPR179. Integrative epigenomic analyses linked implicated loci to regulatory elements in blood and/or brain. Additionally, 74 CpGs were differentially methylated in males or females. Methylation at significant CpGs correlated with gene expression in blood and/or brain. Conclusion: This study identified DNA methylation related to opioid medication use in general populations. The results could inform the development of blood methylation biomarkers of opioid use

    Cardiovascular disease protein biomarkers are associated with kidney function: The Framingham Heart Study.

    No full text
    BackgroundBiomarkers common to chronic kidney disease (CKD) and cardiovascular disease (CVD) may reflect early impairments underlying both diseases.MethodsWe evaluated associations of 71 CVD-related plasma proteins measured in 2,873 Framingham Heart Study (FHS) Offspring cohort participants with cross-sectional continuous eGFR and with longitudinal change in eGFR from baseline to follow-up (ΔeGFR). We also evaluated the associations of the 71 CVD proteins with the following dichotomous secondary outcomes: prevalent CKD stage ≥3 (cross-sectional), new-onset CKD stage ≥3 (longitudinal), and rapid decline in eGFR (longitudinal). Proteins significantly associated with eGFR and ΔeGFR were subsequently validated in 3,951 FHS Third Generation cohort participants and were tested using Mendelian randomization (MR) analysis to infer putatively causal relations between plasma protein biomarkers and kidney function.ResultsIn cross-sectional analysis, 37 protein biomarkers were significantly associated with eGFR at FDRDiscussion/conclusionsEight protein biomarkers were consistently associated with eGFR in cross-sectional and longitudinal analysis in both cohorts and may capture early kidney impairment; others were implicated in association and causal inference analyses. A subset of CVD protein biomarkers may contribute causally to the pathogenesis of kidney impairment and should be studied as targets for CKD treatment and early prevention

    Longitudinal change in blood DNA epigenetic signature after smoking cessation

    No full text
    Cigarette smoking is associated with epigenetic changes that may be reversible following smoking cessation. Whole blood DNA methylation was evaluated in Framingham Heart Study Offspring (n = 169) and Third Generation (n = 30) cohort participants at two study visits 6 years apart and in Atherosclerosis Risk in Communities (ARIC) study (n = 222) participants at two study visits 20 years apart. Changes in DNA methylation (delta β values) at 483,565 cytosine-phosphate-guanine (CpG) sites and differentially methylated regions (DMRs) were compared between participants who were current, former, or never smokers at both visits (current-current, former-former, never-never, respectively), versus those who quit in the interim (current-former). Interim quitters had more hypermethylation at four CpGs annotated to AHRR, one CpG annotated to F2RL3, and one intergenic CpG (cg21566642) compared with current-current smokers (FDR < 0.02 for all), and two significant DMRs were identified. While there were no significant differentially methylated CpGs in the comparison of interim quitters and former-former smokers, 106 DMRs overlapping with small nucleolar RNA were identified. As compared with all non-smokers, current-current smokers additionally had more hypermethylation at two CpG sites annotated to HIVEP3 and TMEM126A, respectively, and another intergenic CpG (cg14339116). Gene transcripts associated with smoking cessation were implicated in immune responses, cell homoeostasis, and apoptosis. Smoking cessation is associated with early reversion of blood DNA methylation changes at CpG sites annotated to AHRR and F2RL3 towards those of never smokers. Associated gene expression suggests a role of longitudinal smoking-related DNA methylation changes in immune response processes

    Association analysis between an epigenetic alcohol risk score and blood pressure

    Get PDF
    Background: Epigenome-wide association studies have revealed multiple DNA methylation sites (CpGs) associated with alcohol consumption, an important lifestyle risk factor for cardiovascular diseases. Results:We generated an alcohol consumption epigenetic risk score (ERS) based on previously reported 144 alcohol-associated CpGs and examined the association of the ERS with systolic blood pressure (SBP), diastolic blood pressure (DBP), and hypertension (HTN) in 3,898 Framingham Heart Study (FHS) participants. We found an association of alcohol intake with the ERS in the meta-analysis with 0.09 units higher ERS per drink consumed per day (p&lt;0.0001). Cross-sectional analyses in FHS revealed that a one-unit increment of the ERS was associated with 1.93 mm Hg higher SBP (p=4.64E-07), 0.68 mm Hg higher DBP (p=0.006), and an odds ratio of 1.78 for HTN (p&lt;2E-16). Meta-analysis of the cross-sectional association of the ERS with BP traits in eight independent external cohorts (n=11,544) showed similar relationships with blood pressure levels, i.e., a one-unit increase in ERS was associated with 0.74 (p=0.002) and 0.50 (p=0.0006) mm Hg higher SBP and DBP, but could not confirm the association with hypertension. Longitudinal analyses in FHS (n=3,260) and five independent external cohorts (n=4,021) showed that the baseline ERS was not associated with a change in blood pressure over time or with incident HTN. Our findings: Our findings provide proof-of-concept that utilizing an ERS is a useful approach to capture the recent health consequences of lifestyle behaviors such as alcohol consumption.</p

    Expression quantitative trait methylation analysis elucidates gene regulatory effects of DNA methylation: the Framingham Heart Study

    No full text
    Abstract Expression quantitative trait methylation (eQTM) analysis identifies DNA CpG sites at which methylation is associated with gene expression. The present study describes an eQTM resource of CpG-transcript pairs derived from whole blood DNA methylation and RNA sequencing gene expression data in 2115 Framingham Heart Study participants. We identified 70,047 significant cis CpG-transcript pairs at p < 1E−7 where the top most significant eGenes (i.e., gene transcripts associated with a CpG) were enriched in biological pathways related to cell signaling, and for 1208 clinical traits (enrichment false discovery rate [FDR] ≤ 0.05). We also identified 246,667 significant trans CpG-transcript pairs at p < 1E−14 where the top most significant eGenes were enriched in biological pathways related to activation of the immune response, and for 1191 clinical traits (enrichment FDR ≤ 0.05). Independent and external replication of the top 1000 significant cis and trans CpG-transcript pairs was completed in the Women’s Health Initiative and Jackson Heart Study cohorts. Using significant cis CpG-transcript pairs, we identified significant mediation of the association between CpG sites and cardiometabolic traits through gene expression and identified shared genetic regulation between CpGs and transcripts associated with cardiometabolic traits. In conclusion, we developed a robust and powerful resource of whole blood eQTM CpG-transcript pairs that can help inform future functional studies that seek to understand the molecular basis of disease

    Dietary and supplemental intake of vitamins C and E is associated with altered DNA methylation in an epigenome-wide association study meta-analysis

    Get PDF
    BACKGROUND: Dietary intake of antioxidants such as vitamins C and E protect against oxidative stress, and may also be associated with altered DNA methylation patterns. METHODS: We meta-analysed epigenome-wide association study (EWAS) results from 11,866 participants across eight population-based cohorts to evaluate the association between self-reported dietary and supplemental intake of vitamins C and E with DNA methylation. EWAS were adjusted for age, sex, BMI, caloric intake, blood cell type proportion, smoking status, alcohol consumption, and technical covariates. Significant results of the meta-analysis were subsequently evaluated in gene set enrichment analysis (GSEA) and expression quantitative trait methylation (eQTM) analysis. RESULTS: In meta-analysis, methylation at 4,656 CpG sites was significantly associated with vitamin C intake at FDR ≤ 0.05. The most significant CpG sites associated with vitamin C (at FDR ≤ 0.01) were enriched for pathways associated with systems development and cell signalling in GSEA, and were associated with downstream expression of genes enriched in the immune response in eQTM analysis. Furthermore, methylation at 160 CpG sites was significantly associated with vitamin E intake at FDR ≤ 0.05, but GSEA and eQTM analysis of the top most significant CpG sites associated with vitamin E did not identify significant enrichment of any biological pathways investigated. CONCLUSIONS: We identified significant associations of many CpG sites with vitamin C and E intake, and our results suggest that vitamin C intake may be associated with systems development and the immune response
    corecore