485 research outputs found
Microscopic study of CaCa fusion
We investigate the fusion barriers for reactions involving Ca isotopes
, , and
using the microscopic time-dependent
Hartree-Fock theory coupled with a density constraint. In this formalism the
fusion barriers are directly obtained from TDHF dynamics. We also study the
excitation of the pre-equilibrium GDR for the
system and the associated -ray
emission spectrum. Fusion cross-sections are calculated using the incoming-wave
boundary condition approach. We examine the dependence of fusion barriers on
collision energy as well as on the different parametrizations of the Skyrme
interaction.Comment: 11 pages, 13 figure
Microscopic Calculation of Fusion: Light to Heavy Systems
The density-constrained time-dependent Hartree-Fock (DC-TDHF) theory is a
fully microscopic approach for calculating heavy-ion interaction potentials and
fusion cross sections below and above the fusion barrier. We discuss recent
applications of DC-TDHF method to fusion of light and heavy neutron-rich
systems.Comment: 8 pages, 8 figure
Fusion using time-dependent density-constrained DFT
We present results for calculating fusion cross-sections using a new
microscopic approach based on a time-dependent density-constrained DFT
calculations. The theory is implemented by using densities and other
information obtained from TDDFT time-evolution of the nuclear system as
constraint on the density for DFT calculations.Comment: 4 Pages, 6 Figures Proceedings of INPC 2013, to be published in EPJ
Web of Conference
Microscopic DC-TDHF study of heavy-ion potentials and fusion cross sections
We study heavy-ion fusion reactions at energies near the Coulomb barrier, in
particular with neutron-rich radioactive ion beams. Dynamic microscopic
calculations are carried out on a three-dimensional lattice using the
Density-Constrained Time-Dependent Hartree-Fock (DC-TDHF) method. New results
are presented for the Sn+Ca system which are compared to
Sn+Ca studied earlier. Our theoretical fusion cross-sections
agree surprisingly well with recent data measured at HRIBF. We also study the
near- and sub-barrier fusion of O on C which is important to
determine the composition and heating of the crust of accreting neutron stars.Comment: Talk given by . Volker E. Oberacker at the 11th International
Conference on Nucleus-Nucleus Collisions (NN2012), San Antonio, Texas, USA,
May 27-June 1, 2012. To appear in the NN2012 Proceedings in Journal of
Physics: Conference Series (JPCS
Senior Leonard Hayes Wins National Piano Competition
Lawrence University’s Leonard Hayes, a senior from Dallas, Texas, won the recent Young Artists’ Division of the 2011 Tourgee Debose National Piano Competition conducted at Southern University in Baton Rouge, La.
This was Hayes’ second first-place showing in the competition having previously won the Tourgee Debose’s sophomore division in 2009.
Hayes received a first-place prize of $1,000 for his winning performance of Beethoven’s “Piano Sonata Op. 90,” Cesar Franck’s “Poco Allegro and Fugue” and two movements from George Walker’s “Piano Sonata No. 2.”
A third-place finisher in the 2010 National Association of Negro Musicians’ Piano Scholarship competition, Hayes studies in the piano studio of Catherine Kautsky
Dynamic Microscopic Theory of Fusion Using DC-TDHF
The density-constrained time-dependent Hartree-Fock (DC-TDHF) theory is a
fully microscopic approach for calculating heavy-ion interaction potentials and
fusion cross sections below and above the fusion barrier. We discuss recent
applications of DC-TDHF method to fusion of light and heavy systems.Comment: Proceedings for the talk presented by A.S. Umar at the Nuclear
Structure and Dynamics II, Opatija, Croatia, July 9-13, 201
PTPN22 gene polymorphism in Takayasu's arteritis
Objective. Takayasu's arteritis (TA) is a chronic, rare granulomatous panarteritis of unknown aetiology involving mainly the aorta and its major branches. In this study, genetic susceptibility to TA has been investigated by screening the functional single nucleotide polymorphism (SNP) of PTPN22 gene encoding the lymphoid-specific protein tyrosine phosphatase. Methods. Totally, 181 patients with TA and 177 healthy controls are genotyped by PCR-RFLP method for the SNP rs2476601 (A/G) of PTPN22 gene. Polymorphic region was amplified by PCR and digested with Xcm I enzyme. Results. Detected frequencies of heterozygous genotype (AG) were 5.1% (9/177) in control group and 3.8% (7/181) in TA group (P = 0.61, odds ratio: 0.75, 95% CI: 0.3, 2.0). No association with angiographic type, vascular involvement or prognosis of TA was observed either. Conclusion. The distribution of PTPN22 polymorphism did not reveal any association with TA in Turkey. © The Author 2008. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved
Shade and Drought Stress-Induced Changes in Phenolic Content of Wild Oat (Avena fatua L.) Seeds
Plants develop under a wide range of maternal environments, depending on the time of emergence, prevailing competition from other plants, and presence or absence of other biotic or abiotic stress factors. Stress factors, such as light limitation and drought, during plant development typically reduces the reproductive allocation to seeds, resulting in fewer and often smaller seeds. Such stress factors may also influence seed quality traits associated with persistence in the soil, such as seed dormancy and chemical defense. For this research, we hypothesized that light limitation and drought during wild oat (Avena fatua L.) seed development would result in reduced allocation to seed phenolics and other aliphatic organic acids previously identified in the seeds of this species. Wild oat isolines (M73 and SH430) were grown in the greenhouse under cyclic drought conditions (2005 only) or two levels of shade (50 and 70%; 2005 and 2006) achieved with standard black shade cloth. The soluble and cellular bound chemical constituents were identified and quantified using gas chromatography - mass spectrometry. The shade and drought stress treatments often significantly affected the mass of the caryopsis and hull seed fractions, as well as the phenolic content of these seed fractions, depending upon isoline, seed fraction, phenolic fraction, and specific phenolics analyzed. Phenolic content of the hull was reduced by the stress environments by up to 48%, whereas there was some evidence of an increase in the soluble phenolic content of the caryopsis in response to the stress environments. Ferulic and p-coumaric acids were the most abundant phenolic acids in both soluble and bound fractions, and bound phenolics comprised generally 95% or more of total phenolics. There was no discernable evidence that the aliphatic organic content was affected by the stress environments. Our results indicate that plant stress during seed development can reduce both the physical and chemical defense in seeds, which may result in seeds that are less persistent in the soil seed bank and potentially less of a weed management concern
- …