52 research outputs found

    A Novel, Robust Quantum Detection Scheme

    Get PDF
    Protocols used in quantum information and precision spectroscopy rely on efficient internal quantum state discrimination. With a single ion in a linear Paul trap, we implement a novel detection method which utilizes correlations between two detection events with an intermediate spin-flip. The technique is experimentally characterized as more robust against fluctuations in detection laser power compared to conventionally implemented methods. Furthermore, systematic detection errors which limit the Rabi oscillation contrast in conventional methods are overcome

    Age, extent and carbon storage of the central Congo Basin peatland complex

    Get PDF
    Peatlands are carbon-rich ecosystems that cover just three per cent of Earth's land surface, but store one-third of soil carbon. Peat soils are formed by the build-up of partially decomposed organic matter under waterlogged anoxic conditions. Most peat is found in cool climatic regions where unimpeded decomposition is slower, but deposits are also found under some tropical swamp forests. Here we present field measurements from one of the world's most extensive regions of swamp forest, the Cuvette Centrale depression in the central Congo Basin. We find extensive peat deposits beneath the swamp forest vegetation (peat defined as material with an organic matter content of at least 65 per cent to a depth of at least 0.3 metres). Radiocarbon dates indicate that peat began accumulating from about 10,600 years ago, coincident with the onset of more humid conditions in central Africa at the beginning of the Holocene. The peatlands occupy large interfluvial basins, and seem to be largely rain-fed and ombrotrophic-like (of low nutrient status) systems. Although the peat layer is relatively shallow (with a maximum depth of 5.9 metres and a median depth of 2.0 metres), by combining in situ and remotely sensed data, we estimate the area of peat to be approximately 145,500 square kilometres (95 per cent confidence interval of 131,900-156,400 square kilometres), making the Cuvette Centrale the most extensive peatland complex in the tropics. This area is more than five times the maximum possible area reported for the Congo Basin in a recent synthesis of pantropical peat extent. We estimate that the peatlands store approximately 30.6 petagrams (30.6 × 10(15) grams) of carbon belowground (95 per cent confidence interval of 6.3-46.8 petagrams of carbon)-a quantity that is similar to the above-ground carbon stocks of the tropical forests of the entire Congo Basin. Our result for the Cuvette Centrale increases the best estimate of global tropical peatland carbon stocks by 36 per cent, to 104.7 petagrams of carbon (minimum estimate of 69.6 petagrams of carbon; maximum estimate of 129.8 petagrams of carbon). This stored carbon is vulnerable to land-use change and any future reduction in precipitation

    The role of mobile policies in coalition building : the Barcelona model as coalition magnet in Buenos Aires and Rio de Janeiro (1989-1996)

    Get PDF
    Research on policy mobility has tended to focus on what moves (e.g. policy models, templates) and who moves them (e.g. consultants, international organizations) with less attention paid to the relational politics of grounding dominant ideas in local policy making. The ‘demand side’ at the end of the mobilization process (e.g. local authorities and policy actors) is usually depicted as passive or as having stable interests. This assumption is problematic as it can reinforce taken for granted power asymmetries in the flow of urban policy ideas, particularly in cases where cities in the Global North are presented as ‘exporting sites’ for a Global South audience of ‘importing sites’. Drawing on the concept of policy ideas as ‘coalition magnets’ from policy studies, this paper demonstrates how local policies are relationally produced by cosmopolitan policy actors on the ‘demand side’ who strategically mobilize circulating ideas as a tool for coalition building. We provide a relational comparative study of Buenos Aires and Rio de Janeiro’s policy processes and urban outcomes in mobilizing the Barcelona model of urban regeneration and strategic planning drawing on evidence from interviews, document analysis, and the biographies of key policy actors. It demonstrates the strategic importance of mobile policies for emerging political actors who employ them as a ‘coalition magnet’ to build support for their governments

    Galaxy bulges and their massive black holes: a review

    Full text link
    With references to both key and oft-forgotten pioneering works, this article starts by presenting a review into how we came to believe in the existence of massive black holes at the centres of galaxies. It then presents the historical development of the near-linear (black hole)-(host spheroid) mass relation, before explaining why this has recently been dramatically revised. Past disagreement over the slope of the (black hole)-(velocity dispersion) relation is also explained, and the discovery of sub-structure within the (black hole)-(velocity dispersion) diagram is discussed. As the search for the fundamental connection between massive black holes and their host galaxies continues, the competing array of additional black hole mass scaling relations for samples of predominantly inactive galaxies are presented.Comment: Invited (15 Feb. 2014) review article (submitted 16 Nov. 2014). 590 references, 9 figures, 25 pages in emulateApJ format. To appear in "Galactic Bulges", E. Laurikainen, R.F. Peletier, and D.A. Gadotti (eds.), Springer Publishin

    Quorum percolation in living neural networks

    No full text
    Cooperative effects in neural networks appear because a neuron. res only if a minimal number m>1 of its inputs are excited. The multiple inputs requirement leads to a percolation model termed quorum percolation. The connectivity undergoes a phase transition as m grows, from a network-spanning cluster at low m to a set of disconnected clusters above a critical m. Both numerical simulations and the model reproduce the experimental results well. This allows a robust quanti. cation of biologically relevant quantities such as the average connectivity (k) over bar and the distribution of connections p(k) from different neural densities

    Next generation sequencing panel based on single molecule molecular inversion probes for detecting genetic variants in children with hypopituitarism

    Get PDF
    Background: Congenital Hypopituitarism is caused by genetic and environmental factors. Over 30 genes have been implicated in isolated and/or combined pituitary hormone deficiency. The etiology remains unknown for up to 80% of the patients, but most cases have been analyzed by limited candidate gene screening. Mutations in the PROP1 gene are the most common known cause, and the frequency of mutations in this gene varies greatly by ethnicity. We designed a custom array to assess the frequency of mutations in known hypopituitarism genes and new candidates, using single molecule molecular inversion probes sequencing (smMIPS). Methods: We used this panel for the first systematic screening for causes of hypopituitarism in children. Molecular inversion probes were designed to capture 693 coding exons of 30 known genes and 37 candidate genes. We captured genomic DNA from 51 pediatric patients with CPHD (n = 43) or isolated GH deficiency (IGHD) (n = 8) and their parents and conducted next generation sequencing. Results: We obtained deep coverage over targeted regions and demonstrated accurate variant detection by comparison to whole-genome sequencing in a control individual. We found a dominant mutation GH1, p.R209H, in a three-generation pedigree with IGHD. Conclusions: smMIPS is an efficient and inexpensive method to detect mutations in patients with hypopituitarism, drastically limiting the need for screening individual genes by Sanger sequencing.Fil: Pérez Millán, María Inés. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Biomédicas; ArgentinaFil: Vishnopolska, Sebastián Alexis. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Daly, Alexandre Z.. University of Michigan. Department of Human Genetics; Estados UnidosFil: Bustamante, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Seilicovich, Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Biomédicas; ArgentinaFil: Bergadá, Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones Endocrinológicas "Dr. César Bergada". Gobierno de la Ciudad de Buenos Aires. Centro de Investigaciones Endocrinológicas "Dr. César Bergada". Fundación de Endocrinología Infantil. Centro de Investigaciones Endocrinológicas "Dr. César Bergada"; ArgentinaFil: Braslavsky, Debora Giselle. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones Endocrinológicas "Dr. César Bergada". Gobierno de la Ciudad de Buenos Aires. Centro de Investigaciones Endocrinológicas "Dr. César Bergada". Fundación de Endocrinología Infantil. Centro de Investigaciones Endocrinológicas "Dr. César Bergada"; ArgentinaFil: Keselman, Ana Claudia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones Endocrinológicas "Dr. César Bergada". Gobierno de la Ciudad de Buenos Aires. Centro de Investigaciones Endocrinológicas "Dr. César Bergada". Fundación de Endocrinología Infantil. Centro de Investigaciones Endocrinológicas "Dr. César Bergada"; ArgentinaFil: Lemons, Rosemary M.. University of Michigan. Department of Human Genetics; Estados UnidosFil: Mortensen, Amanda H.. University of Michigan. Department of Human Genetics; Estados UnidosFil: Marti, Marcelo Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Camper, Sally A.. University of Michigan. Department of Human Genetics; Estados UnidosFil: Kitzman, Jacob O.. University of Michigan. Department of Human Genetics; Estados Unido
    corecore