23 research outputs found

    Dynamical fluctuations in mode locking experiments on vortices moving through mesoscopic channels

    Full text link
    We have studied the flow properties of vortices driven through easy flow mesoscopic channels by means of the mode locking (ML) technique. We observe a ML jump with large voltage broadening in the real part of the rf-impedance. Upon approaching the pure dc flow by reducing the rf amplitude, the ML jump is smeared out via a divergence of the voltage width. This indicates a large spread in internal frequencies and lack of temporal coherence in the dc-driven state.Comment: 2 pages, 2 figures, contribution to M2S-HTSC 2003, Ri

    In-plane field-induced vortex liquid correlations in underdoped Bi_2Sr_2CaCu_2O_8+\delta

    Full text link
    The effect of a magnetic field component parallel to the superconducting layers on longitudinal Josephson plasma oscillations in the layered high temperature superconductor Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} is shown to depend on the thermodynamic state of the underlying vortex lattice. Whereas the parallel magnetic field component depresses the Josephson Plasma Resonance (JPR) frequency in the vortex solid phase, it may enhance it in the vortex liquid. There is a close correlation between the behavior of microwave absorption near the JPR frequency and the effectiveness of pancake vortex pinning, with the enhancement of the plasma resonance frequency occurring in the absence of pinning, at high temperature close to the vortex melting line. An interpretation is proposed in terms of the attraction between pancake vortices and Josephson vortices, apparently also present in the vortex liquid state.Comment: 8 pages, 7 Figures, submitted to Phys. Rev.

    Inverse melting of the vortex lattice

    Full text link
    Inverse melting, in which a crystal reversibly transforms into a liquid or amorphous phase upon decreasing the temperature, is considered to be very rare in nature. The search for such an unusual equilibrium phenomenon is often hampered by the formation of nonequilibrium states which conceal the thermodynamic phase transition, or by intermediate phases, as was recently shown in a polymeric system. Here we report a first-order inverse melting of the magnetic flux line lattice in Bi2Sr2CaCu2O8 superconductor. At low temperatures, the material disorder causes significant pinning of the vortices, which prevents observation of their equilibrium properties. Using a newly introduced 'vortex dithering' technique we were able to equilibrate the vortex lattice. As a result, direct thermodynamic evidence of inverse melting transition is found, at which a disordered vortex phase transforms into an ordered lattice with increasing temperature. Paradoxically, the structurally ordered lattice has larger entropy than the disordered phase. This finding shows that the destruction of the ordered vortex lattice occurs along a unified first-order transition line that gradually changes its character from thermally-induced melting at high temperatures to a disorder-induced transition at low temperatures.Comment: 13 pages, 4 figures, Nature, In pres

    Vortex fluctuations in underdoped Bi2Sr2CaCu2O8+d crystals

    Get PDF
    Vortex thermal fluctuations in heavily underdoped Bi2Sr2CaCu2O8+d (Tc=69.4 K) are studied using Josephson plasma resonance (JPR). From the data in zero magnetic field, we obtain the penetration depth along the c-axis, lambda_{L,c}(0) = 229 micrometers and the anisotropy ratio gamma(0) = 600. The low plasma frequency allows us to study phase correlations over the whole vortex solid (Bragg-glass) state. The JPR results yield a wandering length r_{w} of vortex pancakes. The temperature dependence of r_{w} as well as its increase with applied dc magnetic field can only be explained by the renormalization of the tilt modulus by thermal fluctuations, and suggest the latter is responsible for the dissociation of the vortices at the first order transition.Comment: 4 pages, 5 figures. Submitted to Phys. Rev. Let

    Nature of c-axis coupling in underdoped Bi2Sr2CaCu2O8 with varying degrees of disorder

    Get PDF
    The dependence of the Josephson Plasma Resonance (JPR) frequency in heavily underdoped Bi2Sr2CaCu2O8+\delta on temperature and controlled pointlike disorder, introduced by high-energy electron irradiation, is cross-correlated and compared to the behavior of the ab-plane penetration depth. It is found that the zero temperature plasma frequency, representative of the superfluid component of the c-axis spectral weight, decreases proportionally with T_c when the disorder is increased. The temperature dependence of the JPR frequency is the same for all disorder levels, including pristine crystals. The reduction of the c-axis superfluid density as function of disorder is accounted for by pair-breaking induced by impurity scattering in the CuO2 planes, rather than by quantum fluctuations of the superconducting phase. The reduction of the c-axis superfluid density as function of temperature follows a T^{2}--law and is accounted for by quasi-particle hopping through impurity induced interlayer states.Comment: 10 pages, 9 Figure

    Shear viscosity measurements at the vortex melting transition in confined geometry in optimally doped Bi2Sr2CaCu2O8

    Get PDF
    International audienceIn order to probe the vortex shear viscosity in the vortex liquid phase, we have introduced two types of vortex-confining structures in optimally doped Bi2Sr2CaCu2O8 single crystals. First, walls of strong vortex pinning separated by weakly pinning channels are fashioned by heavy ion irradiation through 25 um-thick Ni masks. Second, a low density of homogeneously distributed amorphous columnar defects is known to impose a polycrystalline structure to the vortex lattice. Resistivity measurements show that the inclusion of confining structures impede vortex flow in the liquid. The resistivity is remarkably well described by the Halperin-Nelson theory for the viscosity due to free two-dimensional vortex lattice dislocations

    Hall-conductivity sign change and fluctuations in amorphous Nbx_{x}Ge1−x_{1-x} films

    Get PDF
    The sign change in the Hall conductivity has been studied in thin amorphous Nb1−x_{1-x}Gex(x≈_x (x\approx0.3) films. By changing the film thickness it is shown that the field at which the sign reversal occurs shifts to lower values (from above to below the mean-field transition field Hc2H_{c2}) with increasing film thickness. This effect can be understood in terms of a competition between a positive normal and a negative fluctuation contribution to the Hall conductivity.Comment: 5 pages, 4 figures, to appear in Phys. Rev.

    Disorder and cc-axis quasiparticle dynamics in underdoped Bi2Sr2CaCu2O8

    Get PDF
    Contribution à LT25International audienceWe present measurements of the Josephson plasma frequency and the in-plane penetration depth of underdoped single crystalline Bi2Sr2CaCu2O8 with varying degrees of disorder introduced by irradiation with 2.3 MeV electrons. Increasing disorder drives T_c down, in agreement with in all model descriptions of high T_c superconductivity. However, the manner in which the JPR frequency, the square of which represents the zero-frequency spectral weight of the c-axis conductivity in the superconducting state, is driven down by disorder depends more strongly on the model description. We show that only the model of impurity assisted quasiparticle hopping in a d-wave superconductor, together with strongly scattering point defects in the superconducting layers, can explain the disorder dependence of the c-axis plasma frequency, the in-plane penetration depth, and T_c consistently. From the data, we extract the energy scale governing nodal quasiparticle excitations, Delta_0 ~ 2.5 k_BT_c

    First-order disorder-driven transition and inverse melting of the vortex lattice

    Full text link
    Vortex matter phase transitions in the high-temperature superconductor Bi2Sr2CaCu2O8 were studied using local magnetization measurements combined with a vortex 'shaking' technique. The measurements revealed thermodynamic evidence of a first-order transition along the second magnetization peak line, at temperatures below the apparent critical point Tcp. We found that the first-order transition line does not terminate at Tcp, but continues down to at least 30 K. This observation suggests that the ordered vortex lattice phase is destroyed through a unified first-order transition that changes its character from thermally induced melting at high temperatures to a disorder-induced transition at low temperatures. At intermediate temperatures the transition line shows an upturn, which implies that the vortex matter displays 'inverse' melting behavior.Comment: 9 pages, 6 figures, Physica C, in pres
    corecore