4 research outputs found

    Data Driven Building Electricity Consumption Model Using Support Vector Regression

    Get PDF
    Every building has certain electricity consumption patterns that depend on its usage. Building electricity budget planning requires a consumption forecast to determine the baseline electricity load and to support energy management decisions. In this study, an algorithm to model building electricity consumption was developed. The algorithm is based on the support vector regression (SVR) method. Data of electricity consumption from the past five years from a selected building object in ITB campus were used. The dataset unexpectedly exhibited a large number of anomalous points. Therefore, a tolerance limit of hourly average energy consumption was defined to obtain good quality training data. Various tolerance limits were investigated, that is 15% (Type 1), 30% (Type 2), and 0% (Type 0). The optimal model was selected based on the criteria of mean absolute percentage error (MAPE) < 20% and root mean square error (RMSE) < 10 kWh. Type 1 data was selected based on its performance compared to the other two. In a real implementation, the model yielded a MAPE value of 14.79% and an RMSE value of 7.48 kWh when predicting weekly electricity consumption. Therefore, the Type 1 data-based model could satisfactorily forecast building electricity consumption

    Pengembangan Pengontrol Tegangan Sistem Mikrogrid Cerdas Menggunakan Sistem Baterai Penyimpan Energi

    Get PDF
    A power outage on a conventional grid can cut the electricity supply to the entire load.  In contrast, Microgrid (MG) can still supply at least the most critical local loads even though blackout occurs in the main grid. MG can also utilize renewable energy sources such as solar and wind energy to generate electricity. That is possible by the advancement of the battery energy storage system (BESS). The BESS able to maintains electricity supply to the load even in outages. The inverter on the SBPE also plays a role in stabilizing the MG output voltage by supplying or absorbing reactive power in the MG system. This paper focuses on the control development of the battery inverter primary controller. The droop control design utilizes the deadband around the nominal voltage. That becomes the improvement of the droop control method used in this study compared to the initial formulation of the droop method. The proposed method was then tested through simulation with four different scenarios. The BESS will operate in the voltage range 194.9V to 234.6V with a droop control deadband in the voltage range 198.0V to 231.0V. Based on the simulation results, the addition of SBPE with the MG scheme on the existing system can improve the quality of the voltage received by the load from 0.994p.u. to 0.997p.u. The simulation also shows that the load still gets a power supply even though there is a blackout on the main grid

    Development of Non-Intrusive Load Monitoring of Electricity Load Classification with Low-Frequency Sampling Based on Support Vector Machine

    Get PDF
    Non-intrusive load monitoring (NILM) is a promising approach to provide energy consumption monitoring of electrical appliances and analysis of current and voltage data with less instrumentation. This paper proposes an electrical load classification model using support vector machine (SVM). SVM was chosen to keep the computational cost low and be able to implement an embedded system. The SVM model was utilized to classify the on/off state of air conditioners, light bulbs, other uncategorized electronics, and their combinations. It utilizes low-frequency sampling data captured every minute, or at a 0.0167 Hz rate. Utilization change in active and reactive power was used as a feature in the model training. The optimal kernel for the model was the radial basis function (RBF) kernel with C and gamma values of 88.587 and 2.336 as hyperparameters, producing a highly accurate model. In testing with real-time conditions, the model classified the on/off state of the electrical loads with 0.93 precision, 0.91 recall, and 0.91 f-score. The results of testing proved that the model can be applied in real time with high accuracy and with an acceptable performance in field implementation using an embedded system

    Development of Non-Intrusive Load Monitoring of Electricity Load Classification with Low-Frequency Sampling Based on Support Vector Machine

    Get PDF
    Non-intrusive load monitoring (NILM) is a promising approach to provide energy consumption monitoring of electrical appliances and analysis of current and voltage data with less instrumentation. This paper proposes an electrical load classification model using support vector machine (SVM). SVM was chosen to keep the computational cost low and be able to implement an embedded system. The SVM model was utilized to classify the on/off state of air conditioners, light bulbs, other uncategorized electronics, and their combinations. It utilizes low-frequency sampling data captured every minute, or at a 0.0167 Hz rate. Utilization change in active and reactive power was used as a feature in the model training. The optimal kernel for the model was the radial basis function (RBF) kernel with C and gamma values of 88.587 and 2.336 as hyperparameters, producing a highly accurate model. In testing with real-time conditions, the model classified the on/off state of the electrical loads with 0.93 precision, 0.91 recall, and 0.91 f-score. The results of testing proved that the model can be applied in real time with high accuracy and with an acceptable performance in field implementation using an embedded system
    corecore