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Abstract. Every building has certain electricity consumption patterns that depend 
on its usage. Building electricity budget planning requires a consumption forecast 
to determine the baseline electricity load and to support energy management 
decisions. In this study, an algorithm to model building electricity consumption 
was developed. The algorithm is based on the support vector regression (SVR) 
method. Data of electricity consumption from the past five years from a selected 
building object in ITB campus were used. The dataset unexpectedly exhibited a 
large number of anomalous points. Therefore, a tolerance limit of hourly average 
energy consumption was defined to obtain good quality training data. Various 
tolerance limits were investigated, that is 15% (Type 1), 30% (Type 2), and 0% 
(Type 0). The optimal model was selected based on the criteria of mean absolute 
percentage error (MAPE) < 20% and root mean square error (RMSE) < 10 kWh. 
Type 1 data was selected based on its performance compared to the other two. In 
a real implementation, the model yielded a MAPE value of 14.79% and an RMSE 
value of 7.48 kWh when predicting weekly electricity consumption. Therefore, 
the Type 1 data-based model could satisfactorily forecast building electricity 
consumption.  

Keywords: building electricity consumption prediction; consumption patterns; data 
driven modeling; historical database; support vector regression. 
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1 Introduction 

The fourth industrial revolution will increase energy consumption, especially in 
the form of electricity that powers computers and production machinery. 
Electricity demand prediction is useful for short-term load allocation and long-
term planning for the new generation of transmission infrastructures. An accurate 
prediction allows better decisions in terms of cost and energy efficiency [1]. In 
Indonesia, electricity consumption data is only used for increasing the awareness 
of energy usage in offices, public buildings, or universities. However, energy 
usage can give some other indications, such as the cost of utilities, CO2 emission 
equivalent (when electricity is produced from fossil sources), building energy 
consumption index, and energy efficiency labeling. A further benefit of using 
electricity consumption data is it enables energy management systems that can 
improve the efficiency of buildings or conserve energy. According to the 
Indonesian energy policy, the government encourages to reduce energy 
consumption through efficient energy management systems. Building energy 
consumption accounts for 39% of total global energy consumption and 38% of 
total global CO2 emissions [2]. Managing electricity used in buildings could 
contribute significantly to CO2 emission reduction, which will ultimately have a 
positive impact on the environment.  

On the production side, renewable energy is an effort to reduce mankind’s carbon 
footprint on our planet. However, renewable energy has its problems, such as 
intermittent energy generation and high initial investment. Therefore, an accurate 
electricity consumption model may aid in achieving a successful renewable 
energy project. 

According to Zhong, et al. in [2] and Wang & Srinivasan in [3], building energy 
consumption models can be classified into three types: physical models, data-
driven models, and hybrid models. Among these, the data-driven models have 
become the most popular approach owing to their low time consumption and 
good performance, as data mining is revolutionizing many industries. Various 
methods of data-driven model development can be found in the literature. In [4], 
Ma, et al. utilized a support vector regression (SVR) method to forecast building 
energy consumption in southern China. Biswas, et al. [5] have proposed an 
artificial neural network (ANN) method to model energy consumption in 
residential buildings. A short-term electrical load forecasting using a support 
vector regression (SVR) model for office buildings is reported by Chen et al. in 
[6]. 

Chammas, et al. in [7] present a report on the development of building electricity 
consumption prediction models that are supported by advancements in smart 
home and smart city technologies. Wireless energy sensors installed in smart 
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homes can give insight into the electricity consumption profile of a building, 
including making a contribution to the reduction of the electrical energy 
consumption that is needed for energy- and cost-efficiency. The method proposed 
in the paper is multi-layer perceptron (MLP). The MLP training data features the 
electricity consumption from appliances and lighting, room temperature and 
humidity, weather station visibility, temperature, humidity, wind speed, dew 
point temperature, and atmospheric pressure data. The research object was a two-
story building in Lebanon. Day of the week (Monday to Sunday) and week status 
(weekday or weekend) were also included in the data set. This method was 
compared with other machine-learning algorithms such as support vector 
machine (SVM), gradient boosting machine (GBM), and random forest (RF). The 
mean absolute percentage error (MAPE) performance metric achieved by this 
method was 27.09%. 

An investigation was carried by Fayaz, et al. [8] on 4 multi-story (33 floors) 
residential buildings to predict electricity consumption using a feed-forward back 
propagation artificial neural network. The buildings were located in Seoul, South 
Korea. This energy prediction method is aimed at energy-efficiency improvement 
on the production (supply) side as well as by using a building energy management 
system (energy conservation). The problem and challenge in this prediction 
model development were to get an accurate result based on weather data, 
geographical location, occupancy level of the residential household, time, etc., in 
addition to smart meter data. As the inputs of the neural network machine learning 
were kWh, outdoor air temperature (OAT), humidity, occupancy (to differentiate 
between busy and vacant conditions). Data collection was performed on each 
floor. The reported average of MAPE for this method and case was 11.96%.  

The big trend of growing smart electricity meter usage in residential households 
in Canada is presented by Zhang, et al. in [9]. The installation of smart meters 
along with Internet of Things supports the collection of electricity consumption 
data along with weather data and time-of-usage (TOU) electricity prices. 
Furthermore, this collected data enables a data-driven based building electricity 
consumption prediction that can create a residential demand-response scenario. 
Support vector regression was used for 15 households and the performance metric 
of the electricity consumption prediction was expressed in MAPE for an hourly 
prediction model as well as an daily prediction model. The MAPE ranges for the 
hourly and daily individual household electricity consumption prediction models 
were 23.31% to 69.17% and 12.78% to 34.95%, respectively. 

An accurate prediction of electricity demand can improve the energy performance 
of a building. This is a complex problem that is highly dependent on the specific 
building [10]. Variables or features to be included in the prediction model are 
usually chosen based on expert knowledge and not through formal procedures 
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based on the features of the model. This can lead to a gap between the predictions 
and the actual values [11]. The feature selection process can be used to find key 
features in a way that has been formalized and is reproducible. It is important to 
design minimally adapted prediction algorithms that can be widely applied to 
different types of buildings and allow scalability [12]. While it is clear that many 
research papers use machine learning with different features as input for 
electricity demand, there are still gaps in the existing research that need to be 
addressed, especially about the scalability and simplicity of the prediction 
algorithms. The present study focused on using easily obtainable features, such 
as date and time, to be used as input for electricity consumption prediction. 

This paper uses support vector regression (SVR) to model the electricity 
consumption of a building based on 5-year data collected in a historical database. 
The object of study was one of the university buildings (Labtek VI, Institut 
Teknologi Bandung, Bandung, Indonesia; latitude -6.890213; longitude 
107.609961), which was already equipped with a measurement system to collect 
electricity consumption data. The SVR method has proven to have the ability to 
transform the high nonlinearity between input and output into linearity for 
improving the prediction accuracy of models and simultaneously ensuring their 
robustness and generalization ability [13-15]. SVR machine learning methods are 
utilized to extend the horizon of observed electricity consumption data to give 
predictive data trends or patterns. The rest of this paper is organized as follows. 
Section 2 highlights the steps that were undertaken to develop the electricity 
consumption model. Section 3 describes the experimental setup and tools used to 
obtain the electricity consumption data. Section 4 discusses the development of 
the electricity consumption model from raw data, which includes preprocessing, 
training, and validation phases. In the last section, the accuracy of the model for 
predicting future electricity consumption is discussed. 

2 Methodology 

The building energy consumption model was developed using the SVR method. 
The SVR modeling principle is to find a model (a function 𝑓 (𝒙)) that has 
deviations 𝜀 from the actual target value 𝑦  for the training data 𝒙 . Consider a 
dataset 𝐷 = {(𝒙 , 𝑦 ), (𝒙 , 𝑦 ), … , (𝒙 , 𝑦 }, 𝒙 ∈ 𝘙 , 𝑦 ∈ 𝘙, then the SVR 
function can be written in Eq. (1) as follows [6]: 

 𝑓(𝒙) = 〈𝒘, 𝒙〉 + 𝑏. (1) 

The optimal regression function is given by  

 𝑚𝑖𝑛 ‖𝒘‖ + 𝐶 ∑ (ξ + ξ ),  (2) 

subject to 
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 𝑦 − 〈𝒘, 𝒙〉 − 𝑏 ≤ 𝜀 + ξ ,  

 〈𝒘, 𝒙〉 + 𝑏 − 𝑦 ≤ 𝜀 + ξ  ,  

 ξ , ξ ≤ 0, (3) 

where the constant 𝐶 >  0 determines the trade-off between the flatness of 𝑓 and 
data deviations, and (𝜉 , 𝜉 ) are slack variables to cope with otherwise infeasible 
constraints on the optimization problem of Eq. (2) subject to Eq. (3). In some 
cases, a nonlinear regression function may be required to adequately model the 
data. In SVR, this can be achieved using a selected kernel function. A nonlinear 
mapping can be used to map the data into a high dimensional feature space where 
linear regression is performed. Different kernels, such as polynomials, sigmoid 
or Gaussian radial basis functions, can be chosen depending on the problem. 

The first step of building an SVR model that can predict electricity consumption 
is to obtain electricity data from the database, which can be on a local or a cloud 
server. Afterward, the raw electricity data are going through the preprocessing 
phase before being used as training data. Preprocessing improves the training data 
quality by removing outliers while maintaining its consistency. The 
preprocessing can ultimately improve prediction accuracy. After the 
preprocessing phase comes the features-selection phase. This phase aims to 
investigate which features relate the most to electrical energy consumption. In 
this paper, the data set is divided by the number of days, i.e. Monday, Tuesday, 
Wednesday, Thursday, Friday, Saturday, and Sunday. A test was conducted to 
find the most relevant features for each data set.  

Nine features that could be obtained from the existing energy consumption 
characteristics were: date, month, year, hour, days, weeks, holidays, office hours, 
and occupancy denoted as [𝑥 , … , 𝑥 ]. Each of these nine features were tested 
using a mutual information (MI) regression module, which belongs to the scikit 
module of Python support vector regression library. The next phase was to select 
the optimal kernel function. Based on the selected kernel function, the optimal 
values of the function parameters can be found either by trial/error [16] or by 
using the GridSearch module in the Python library [17].  

The final step was selection of the prediction model. The model was selected 
based on the resulting accuracy by the criteria of mean absolute percentage error 
(MAPE), as expressed in Eq. (4), and root mean square error (RMSE), as 
expressed in Eq. (5). The validation was acquired by calculation of the 
corresponding RMSE value between the SVR estimate and its reference:  

 𝑅𝑀𝑆𝐸 = ∑ (𝑓(𝑥) − 𝑦 )   (4) 
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where 𝑛 is the amount of data used in this investigation, 𝑓(𝑥) is the output of 
SVR, and 𝑦  denotes the corresponding target/reference value.  

 𝑀𝐴𝑃𝐸 =
%

∑
( )

 (5) 

Furthermore, the MAPE and RMSE values of the three types of data were 
compared in order to see the effect of data preprocessing, which can help to 
decide the best training data. If the MAPE value <20% and the value of RMSE 
<10 kWh, then the prediction model is acceptable to be deployed [18]. If the error 
value is above the minimum standard, then the parameter search will be repeated 
to find a better kernel function. The steps of this approach are represented in 
Figure 1. 

 
Figure 1 SiElis electricity information system. 
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3 Experiment Setup 

The experiment began with data collection by the edge devices integrated into a 
system called SiElis (Sistem Informasi Energi Listrik, Electricity Information 
System). The measurement device sends real-time electricity consumption data 
to a historical database installed on an Internet of Things (IoT) cloud server. This 
system is an implementation of the advanced metering infrastructure concept as 
reported by Cecati, et al. in [19]. It has the same IoT concept as used by Haq, et 
al. [20] and Friansa, et al. [21], however, in this case it is used to measure the 
electricity consumption of the building. The applications as well as the 
communication of SiElis are implemented in an embedded system as local data 
concentrators, as depicted in Figure 2. 

(a) (b) (c) 

Figure 2 SiElis implementation in Labtek VI building: (a) CT & VT sensors; (b) 
power meter implementation; (c) local data concentrator. 

Electric current measurement is done by current transformers (CT). The voltage 
and current measurements are done at the electricity main distribution panel of 
the building, as shown in Figure 3. A power meter is located on every measuring 
point to process the measurement data into several electrical parameters, such as 
the average of three-phase current, current of each phase, line to line voltage, line 
to neutral voltage, the voltage between phases, voltage of each phase, average 
power factor, power factor of each phase, and frequency. The measurement data 
from the power meter are sent to a Raspberry Pi 3 with the RS485 communication 
protocol. Then, the Raspberry Pi 3 sends the collected data to a cloud database 
via the internet. The online cloud database is in MySQL format. The Raspberry 
Pi 3 accesses the MySQL database using the TCP/IP protocol. All the mentioned 
routines are programmed to send the data every minute to the cloud database 
server. For downloading and preparation purposes the users can access the data 
through a PHPMyAdmin interface. 
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Figure 3 Workflow of the data driven building electricity consumption model. 

4 Results and Discussion 

From a thorough investigation of the data in the MySQL database, an 
unexpectedly large amount of anomalous data were found. Therefore, to avoid 
anomalies, top and bottom limits were set based on average daily electricity 
consumption from 2013 to 2018. Furthermore, data from holidays, which have 
relatively low electricity consumption compared to normal weekdays, were also 
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separated. To handle the problem of holidays, they are calculated separately 
based on the average consumption of each hour on each day.  

The data were grouped based on the name of day, e.g. Monday Training Data 
contained electrical data taken on Mondays. Various tolerance limits were 
defined for the data; the data sets were called Type 1, Type 2, and Type 0. The 
tolerance limit for Type 1 data was 15%, Type 2 data is 30%, and lastly Type 0 
was without tolerance limit. The effect of data set type on the model’s prediction 
accuracy was studied. Overall, there were 21 data sets for the development of the 
prediction model as shown in Figure 4.  

 

Figure 4 Tested data sets. 

In machine learning, the training phase is a teaching stage to discover any specific 
patterns in the available training data. One kind of machine learning is support 
vector regression. This is a method based on a supervised learning system, which 
learns the relationship between features in the training stage. It aims to find 
specific patterns. The recognized patterns can be used to predict the target or 
output of the test data. 

Each data set was processed with the mutual information (MI) method. A higher 
MI value corresponds to a closer correlation between features and targets. In this 
study, 0.1 was chosen as the lower limit for the MI value; this value determines 
the selected features. The results are shown in Table 1. 



 FX Nugroho Soelami, et al. 

574 
 

Table 1 Feature selection by mutual information. 

Features Variables MI 

Date x1 0.00 

Office hours x2 0.08 

Month x3 0.12 

Year x4 0.05 

Time x5 1.00 

Week x6 0.60 

Holiday x7 0.08 

Day x8 0.85 

Based on the literature, the radial basis function (RBF) kernel has been proven to 
perform better compared to other kernels [22]. Therefore, the RBF kernel was 
selected and used in the model development of the electricity consumption 
prediction. The RBF kernel is the most popular choice of kernel type used in SVR 
because of its localized and finite responses across the entire range of the real x 
axis [16]. 

 ∅(𝑥, 𝑥 ) = exp (−𝛾||𝑥 − 𝑥 || ) (6) 

where 𝜎 is the parameter defining the behavior of the kernel. 

Suitable values for the SVR parameters C, 𝜀, can be found with Eq. (2) and for 𝛾 
with Eq. (6). The parameters are determined by utilizing the GridSearch module. 
The two parameters C and 𝛾 found for the RBF kernel are listed in Tables 2 and 
3 respectively.  

In the validation phase, the test data output and the corresponding actual 
measurement data were compared. From the comparison, the deviation and the 
accuracy of the prediction were obtained. 

Table 2 C parameter for each data set. 

Model Type 0 Type 1 Type 2 

Monday 0.372759 7.196857 5.179475 

Tuesday 3.727594 5.179475 1.930698 

Wednesday 2.682696 5.179475 3.727594 

Thursday 0.517947 1.389495 10.000000 

Friday 10.000000 7.196857 10.000000 

Saturday 0.138950 0.268270 0.138950 

Sunday 0.138950 0.138950 0.268270 
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Table 3 𝛾  Parameter for each data set. 

Model Type 0 Type 1 Type 2 

Monday 0.517947 1.389495 1.930698 

Tuesday 0.138950 1.389495 2.682696 

Wednesday 1.389495 1.389495 1.389495 

Thursday 0.719686 0.517947 1.389495 

Friday 0.517947 1.389495 0.517947 

Saturday 1.000000 1.389495 1.000000 

Sunday 1.000000 1.000000 1.389495 

Twenty percent of the data was used as test data in the validation stage. At this 
stage, the machine ‘guesses’ the output based on its learning experience from the 
data in the training process. Figure 5 is a prediction example using Type 0 dataset 
for electricity consumption on Mondays. 

 
Figure 5 Electricity consumption model for Mondays (Type 0). 

The prediction model was selected based on its prediction accuracy, which was 
quantified by the MAPE and RMSE values. The MAPE and RMSE values of the 
three dataset types were compared, where the effect of the data preprocessing can 
be seen from the resulting prediction accuracy. The results will be discussed in 
the following. 

As can be seen in Figure 5, the model can predict the electricity consumption of 
the building on Mondays in this case. Additionally, it shows the capability of the 
prediction model to replicate seasonal changes within the year. The model has 
been provided enough historical electricity consumption data to learn these 
changes. By providing enough data, the proposed method could potentially be 
applied to similar buildings in any climate zone. 
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As can be seen in Figures 6 and 7, the highest MAPE value was shown by the 
Type 0 data, followed by the Type 2 data, whereas the lowest MAPE value was 
shown by the Type 1 data. Based on the MAPE and RMSE values for all three 
data types, the daily model for Type 1 data type gave the lowest MAPE and 
RMSE compared to the other two types of data.  

According to Figures 6 and 7, the Type 1 model could generate a profile of energy 
consumption with an MAPE error range of 9.65% up to 12.34% and an RMSE 
error range of 2.42 to 5.29 kWh when compared against the validation set. This 
model performed better than the other two models (Type 0 and Type 2). 
Therefore, the prediction model for electricity consumption uses data Type 1 as 
training data with its related RBF kernels along with their respective features. 
Compared to the results of similar approaches by Chammas, et al. [7], Fayaz, et 
al. [8], and Zhang, et al. [9], which also use temporal data to predict electricity 
use, the proposed prediction method performs within a satisfactory MAPE range. 

Once the best model for each day was obtained, the corresponding parameters 
could be used in the prediction algorithm. They were stored in a file that could be 
called and used further without any additional training phase. 

 

Figure 6 MAPE for the validation of each model. 
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Figure 7 RMSE for the validation of each model. 

In the following, the result of the prediction model implementation to an online 
database is discussed. The model tried to predict the electricity consumption of 
Monday, May 21, 2018, to Sunday, May 27, 2018. Afterward, the prediction 
program sent the results to an online MySQL database. Table 4 lists the prediction 
results that were downloaded from the online database compared to the actual 
value of electricity consumption obtained from SiElis. 

Table 4 Prediction from May 21 to May 27, 2018. 

Date Prediction (kWh) Actual (kWh) 

May 21, 2018 1016,81 829,37 

May 22, 2018 1015,75 890,42 

May 23, 2018 1008,56 894,08 

May 24, 2018 933,59 938,59 

May 25, 2018 945,78 917,67 

May 26, 2018 568,71 598,53 

May 27, 2018 468,14 521,12 

Figure 8 shows a comparison of the model prediction output to the actual reading 
obtained from SiElis. This real-life implementation comparison yielded an 
MAPE value of 14.79% and an RMSE of 7.48 kWh. After studying the model 
development results, these prediction results can be useful as an aid for the budget 
planning process in order to adapt to the electricity tariff during a period, as one 
example of many potential applications. The predicted results of the weekly 
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electrical energy consumption profile can also be used as a comparison 
(benchmarking) of the control process and performance of conservation methods 
that are carried out. The effect of these measures can be seen by comparing the 
predicted electricity consumption before with electricity consumption after 
energy-conservation measures.  

 
Figure 8 Weekly electricity consumption prediction. 

5 Conclusions 

A data driven concept was developed to model and predict building electricity 
consumption using five years from historical data of Labtek VI building, Institut 
Teknologi Bandung. Three levels of data preprocessing were applied based on 
anomaly tolerance limits of 15%, 30% and without data preprocessing. The 
datasets were called Type 1, Type 2, and Type 0, respectively. The highest MAPE 
value was produced by the Type 0 data, followed by the Type 2 data, and the 
lowest MAPE value was shown by the Type 1 data. The Type 1 model was fed 
to the test dataset, with an error range from 9.65% to 12.34% and 2.42 to 5.29 
kWh respectively. When the proposed system was applied in a real-life 
implementation, the model could predict the profile of weekly electricity 
consumption with a corresponding MAPE value of 14.79% and an RMSE value 
of 7.48 kWh. With the satisfying performance of the Type 1-based model, the 
system enables many potential applications, especially in support of electricity 
budget planning and energy management decisions. 
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