42 research outputs found

    Downscaling heavy rainfall in the subtropics ? a simple approach for dynamical nesting

    No full text
    International audienceThe simulation of local scale precipitation with nested models often suffers from large errors in the boundary rows. Advection of precipitation into the model domain of the small scale model can lead to an overestimation of precipitation in the boundary grid cells of the nested model and a drying of the interior grid area. Consequently, the finer scale structure of rainfall events of the small scale model can not evolve. These errors result from three main sources: "dynamical", "scale", and "parameterization" problems. As a first step to reduce the "parameterization" boundary errors, we propose a nesting procedure where rainwater from the driving larger scale model is converted to cloud water in the smaller scale model. The nesting method is applied to a case study of heavy rainfall in semi-arid southern Morocco. The results show the elimination of erroneous excessive rainfall in the boundary rows and slightly enhanced rainfall in the interior of the nested model domain. Additionally, fine scale structures in the precipitation patterns develop. The excessive surface runoff is clearly diminished in comparison to the standard nesting procedure. The proposed approach enables scale consistent precipitation patterns resulting from model physics and grid-resolution of the smaller scale model for the complete model domain

    Pyrrolizidines for direct air capture and CO2 conversion

    Full text link
    Greenhouse gases such as CO2 strongly contribute to the rising temperatures of our planet, but as long as our society is dependent on fossil fuels, this trend will even increase in the near future. Therefore, CO2 capture and subsequent utilization constitute an approach for decarbonization and CO2 mitigation, and for this purpose, amine scrubbing remains the industrially most established process. In this article, we describe the CO2 capture-ability of pyrrolizidine-based diamines, a scaffold with remarkably good properties to fulfill this challenge. We observed fast equimolar CO2-uptake, as well as high stability of these compounds during multiple capture and release-cycles. In addition, the amines could be utilized for direct air capture. Finally, we demonstrate the utility of the pyrrolizidine absorbents in the reduction of CO2 and for the formation of oxazolidinones

    Protein-Binding Microarray Analysis of Tumor Suppressor AP2α Target Gene Specificity

    Get PDF
    Cheap and massively parallel methods to assess the DNA-binding specificity of transcription factors are actively sought, given their prominent regulatory role in cellular processes and diseases. Here we evaluated the use of protein-binding microarrays (PBM) to probe the association of the tumor suppressor AP2α with 6000 human genomic DNA regulatory sequences. We show that the PBM provides accurate relative binding affinities when compared to quantitative surface plasmon resonance assays. A PBM-based study of human healthy and breast tumor tissue extracts allowed the identification of previously unknown AP2α target genes and it revealed genes whose direct or indirect interactions with AP2α are affected in the diseased tissues. AP2α binding and regulation was confirmed experimentally in human carcinoma cells for novel target genes involved in tumor progression and resistance to chemotherapeutics, providing a molecular interpretation of AP2α role in cancer chemoresistance. Overall, we conclude that this approach provides quantitative and accurate assays of the specificity and activity of tumor suppressor and oncogenic proteins in clinical samples, interfacing genomic and proteomic assays

    Nuclear factor I genomic binding associates with chromatin boundaries

    Get PDF
    BACKGROUND: The Nuclear Factor I (NFI) family of DNA binding proteins (also called CCAAT box transcription factors or CTF) is involved in both DNA replication and gene expression regulation. Using chromatin immuno-precipitation and high throughput sequencing (ChIP-Seq), we performed a genome-wide mapping of NFI DNA binding sites in primary mouse embryonic fibroblasts. RESULTS: We found that in vivo and in vitro NFI DNA binding specificities are indistinguishable, as in vivo ChIP-Seq NFI binding sites matched predictions based on previously established position weight matrix models of its in vitro binding specificity. Combining ChIP-Seq with mRNA profiling data, we found that NFI preferentially associates with highly expressed genes that it up-regulates, while binding sites were under-represented at expressed but unregulated genes. Genomic binding also correlated with markers of transcribed genes such as histone modifications H3K4me3 and H3K36me3, even outside of annotated transcribed loci, implying NFI in the control of the deposition of these modifications. Positional correlation between + and - strand ChIP-Seq tags revealed that, in contrast to other transcription factors, NFI associates with a nucleosomal length of cleavage-resistant DNA, suggesting an interaction with positioned nucleosomes. In addition, NFI binding prominently occurred at boundaries displaying discontinuities in histone modifications specific of expressed and silent chromatin, such as loci submitted to parental allele-specific imprinted expression. CONCLUSIONS: Our data thus suggest that NFI nucleosomal interaction may contribute to the partitioning of distinct chromatin domains and to epigenetic gene expression regulation. NFI ChIP-Seq and input control DNA data were deposited at Gene Expression Omnibus (GEO) repository under accession number GSE15844. Gene expression microarray data for mouse embryonic fibroblasts are on GEO accession number GSE15871

    Downscaling heavy rainfall in the subtropics – a simple approach for dynamical nesting

    No full text
    The simulation of local scale precipitation with nested models often suffers from large errors in the boundary rows. Advection of precipitation into the model domain of the small scale model can lead to an overestimation of precipitation in the boundary grid cells of the nested model and a drying of the interior grid area. Consequently, the finer scale structure of rainfall events of the small scale model can not evolve. These errors result from three main sources: "dynamical", "scale", and "parameterization" problems. As a first step to reduce the "parameterization" boundary errors, we propose a nesting procedure where rainwater from the driving larger scale model is converted to cloud water in the smaller scale model. The nesting method is applied to a case study of heavy rainfall in semi-arid southern Morocco. The results show the elimination of erroneous excessive rainfall in the boundary rows and slightly enhanced rainfall in the interior of the nested model domain. Additionally, fine scale structures in the precipitation patterns develop. The excessive surface runoff is clearly diminished in comparison to the standard nesting procedure. The proposed approach enables scale consistent precipitation patterns resulting from model physics and grid-resolution of the smaller scale model for the complete model domain
    corecore