6,330 research outputs found

    Deformable vehicle wheel Patent

    Get PDF
    Resilient vehicle wheel for lunar surface trave

    Les constituants de la cyberdépendance

    Get PDF

    Effects of simplifying assumptions on optimal trajectory estimation for a high-performance aircraft

    Get PDF
    When analyzing the performance of an aircraft, certain simplifying assumptions, which decrease the complexity of the problem, can often be made. The degree of accuracy required in the solution may determine the extent to which these simplifying assumptions are incorporated. A complex model may yield more accurate results if it describes the real situation more thoroughly. However, a complex model usually involves more computation time, makes the analysis more difficult, and often requires more information to do the analysis. Therefore, to choose the simplifying assumptions intelligently, it is important to know what effects the assumptions may have on the calculated performance of a vehicle. Several simplifying assumptions are examined, the effects of simplified models to those of the more complex ones are compared, and conclusions are drawn about the impact of these assumptions on flight envelope generation and optimal trajectory calculation. Models which affect an aircraft are analyzed, but the implications of simplifying the model of the aircraft itself are not studied. The examples are atmospheric models, gravitational models, different models for equations of motion, and constraint conditions

    Quantum phase estimation algorithm in presence of static imperfections

    Full text link
    We study numerically the effects of static imperfections and residual couplings between qubits for the quantum phase estimation algorithm with two qubits. We show that the success probability of the algorithm is affected significantly more by static imperfections than by random noise errors in quantum gates. An improvement of the algorithm accuracy can be reached by application of the Pauli-random-error-correction method (PAREC).Comment: 5 pages, 5 figures. Research avilable at http://www.quantware.ups-tlse.fr

    NASA Handbook for Spacecraft Structural Dynamics Testing

    Get PDF
    Recent advances in the area of structural dynamics and vibrations, in both methodology and capability, have the potential to make spacecraft system testing more effective from technical, cost, schedule, and hardware safety points of view. However, application of these advanced test methods varies widely among the NASA Centers and their contractors. Identification and refinement of the best of these test methodologies and implementation approaches has been an objective of efforts by the Jet Propulsion Laboratory on behalf of the NASA Office of the Chief Engineer. But to develop the most appropriate overall test program for a flight project from the selection of advanced methodologies, as well as conventional test methods, spacecraft project managers and their technical staffs will need overall guidance and technical rationale. Thus, the Chief Engineer's Office has recently tasked JPL to prepare a NASA Handbook for Spacecraft Structural Dynamics Testing. An outline of the proposed handbook, with a synopsis of each section, has been developed and is presented herein. Comments on the proposed handbook are solicited from the spacecraft structural dynamics testing community

    Quantum error correction of coherent errors by randomization

    Full text link
    A general error correction method is presented which is capable of correcting coherent errors originating from static residual inter-qubit couplings in a quantum computer. It is based on a randomization of static imperfections in a many-qubit system by the repeated application of Pauli operators which change the computational basis. This Pauli-Random-Error-Correction (PAREC)-method eliminates coherent errors produced by static imperfections and increases significantly the maximum time over which realistic quantum computations can be performed reliably. Furthermore, it does not require redundancy so that all physical qubits involved can be used for logical purposes.Comment: revtex 4 pages, 3 fig

    Satellite passive microwave sea-ice concentration data set inter-comparison for Arctic summer conditions

    Get PDF
    We report on results of a systematic inter-comparison of 10 global sea-ice concentration (SIC) data products at 12.5 to 50.0 km grid resolution from satellite passive microwave (PMW) observations for the Arctic during summer. The products are compared against SIC and net ice surface fraction (ISF) - SIC minus the per-grid-cell melt pond fraction (MPF) on sea ice - as derived from MODerate resolution Imaging Spectroradiometer (MODIS) satellite observations and observed from ice-going vessels. Like in Kern et al. (2019), we group the 10 products based on the concept of the SIC retrieval used. Group I consists of products of the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) Ocean and Sea Ice Satellite Application Facility (OSI SAF) and European Space Agency (ESA) Climate Change Initiative (CCI) algorithms. Group II consists of products derived with the Comiso bootstrap algorithm and the National Oceanographic and Atmospheric Administration (NOAA) National Snow and Ice Data Center (NSIDC) SIC climate data record (CDR). Group III consists of Arctic Radiation and Turbulence Interaction Study (ARTIST) Sea Ice (ASI) and National Aeronautics and Space Administration (NASA) Team (NT) algorithm products, and group IV consists of products of the enhanced NASA Team algorithm (NT2). We find widespread positive and negative differences between PMW and MODIS SIC with magnitudes frequently reaching up to 20 %-25 % for groups I and III and up to 30 %-35 % for groups II and IV. On a pan-Arctic scale these differences may cancel out: Arctic average SIC from group I products agrees with MODIS within 2 %-5 % accuracy during the entire melt period from May through September. Group II and IV products overestimate MODIS Arctic average SIC by 5 %-10 %. Out of group III, ASI is similar to group I products while NT SIC underestimates MODIS Arctic average SIC by 5 %-10 %. These differences, when translated into the impact computing Arctic sea-ice area (SIA), match well with the differences in SIA between the four groups reported for the summer months by Kern et al. (2019). MODIS ISF is systematically overestimated by all products; NT provides the smallest overestimations (up to 25 %) and group II and IV products the largest overestimations (up to 45 %). The spatial distribution of the observed overestimation of MODIS ISF agrees reasonably well with the spatial distribution of the MODIS MPF and we find a robust linear relationship between PMW SIC and MODIS ISF for group I and III products during peak melt, i.e. July and August. We discuss different cases taking into account the expected influence of ice surface properties other than melt ponds, i.e. wet snow and coarse-grained snow/refrozen surface, on brightness temperatures and their ratios used as input to the SIC retrieval algorithms. Based on this discussion we identify the mismatch between the actually observed surface properties and those represented by the ice tie points as the most likely reason for (i) the observed differences between PMW SIC and MODIS ISF and for (ii) the often surprisingly small difference between PMW and MODIS SIC in areas of high melt pond fraction. We conclude that all 10 SIC products are highly inaccurate during summer melt. We hypothesize that the unknown number of melt pond signatures likely included in the ice tie points plays an important role - particularly for groups I and II - and recommend conducting further research in this field
    • …
    corecore