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INTRODUCTION

When analyzing the performance of an aircraft, certain simplifying assumptions, which decrease the complexity
of the problem, can often be made. The degree of accuracy required in the solution may detcrmine the extent
to which these simplifying assumptions are incorporated. A complex model may yicld more accurate results if it
describes the real situation more thoroughly. However, a complex model usually involves more computation time,
makes the analysis more difficult, and oftcn requires more information to do the analysis. Therefore, to choose
the simplifying assumptions intelligently, it is important to know what cffects the assumptions may have on the
calculated performance of a vehicle. This paper examincs scveral simplifying assumptions, compares the effects of
simplificd models to those of the more complex oncs, and draws conclusions about the impact of these assumptions
on flight envelope generation and optimal trajectory calculation. Models which affect an aircrafi are analyzed, but the
implications of simplifying thc model of the aircraft itsclf arc not studicd. The examples in this paper are atmospheric
models, gravitational models, diffcrent models for equations of motion, and constraint conditions.

The results are calculated using the energy state approximation (Bryson, Desai, and Hoffman, 1969). In the
cnergy statc approximation, the aircraft is modeled as a point mass in the vertical planc, and specific energy is used
as a statc variable. The results are for a high-pcrformance aircraft in minimum time-to-encrgy trajectories.

NOMENCLATURE

a speed of sound, s%

D drag, Ib

E, specific encrgy, ft

f function, or forces, Ib

G gravitational constant, scfct‘] m
g acccleration due 1o gravity, Efé’
h geopotential altitude, It

J cost function

L lift, Ib

Lim temperaturc lapse ratc, TEf
M Mach number

M, mass of thc Earth, 1b

Mo mean molecular weight

m . mass of the vehicle, slug

P pressure, %l}

PLA power lever angle

P, spccific power, 's%

q dynamic pressure, %tlz)—

R range, ft

R. radius of the Earth, ft



fulb

R* universal gas constant, g
T thrust, 1b, or tempcrature, °R
{ time, sec
v velocity, Scf(l:
w fucl weight, 1b
s fucl flow, {2
z gcomectric altitude, i ) o
o angle of attack, rad ’ -
o flightpath angle, rad, or ratio of spccific heats i
p density of air, %lgg
first derivative
Subscripts
ave average
b base
1dl idle
h in the horizontal plane
lim limit
maz maximum
min minimum
ref reference
v in the vertical plane -
z z-body axis of the vehicle
2z z-body axis of the vchicle

ENERGY STATE APPROXIMATION

Background

The trajectorics discussed in this paper are calculated using the cnergy state approximation theory (Bryson,
Desai, and Hoffman, 1969). This thcory modcls the aircraft as a point-mass and assumes a flat, nonrotating Earth,
which is reflected in the cquations of motion used. The general equations of motion for a pomt mass in the ver-

tical planc arc derived by Micle (1962). They can be glvcn by, first, summing the forccs in the direction of the

vclocny veeior: 7 ] N
- Ticosa — Tzsma D - mgsm'y mV 7 (n

where T is thrusi a is angle of dtld(.k Dis drag, mg is Lhc VCth]C S wcu_,ht ~ is 1hc ﬂlghtpath anglc m is the

vehicle’s mass, and V is the first dcnvalwc of velocity. By summmg Lhc forccs perpcndncular to the va cnty vector

Tsma+Tco¢a+L mgcosry mV'y 7 (2)'
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where L is lift, V is velocity, and 4 is the first derivative of the flightpath anglc. These equations assume that
the vehicle thrust vector is fixcd with respect to the vehicle body axcs and acts in both the z and 2z body axes of

the vchicle.

In the energy state approximation, the total encrgy per unit mass, or specific energy, (E,) is considered a state
variable and is derived from the encrgy equation (Bryson, Desai, and Hoffman, 1969)

1
E=mgz+ -2—sz (3)

where E is energy, and z is geometric altitude. This is divided by the vehicle weight to give the specific energy
V2

E°=Z+E (4)

When this quantity is differcntiatcd with respect to time, the equation for specific power (P,) is given

P,=z’+-Vg—V (5

An expression for V can be derived from equation 1 resulting in

T.cosa — T, sinaw — D — mgsin
= == = =7 (6)

1%

An expression for z can be derived from the definition of 7

. 12
=sin”" = 7
7 7 @
so that
3= Vsiny (8)
Substituting cquations 6 and 8 into cquation 5 results in:
P,=Vsinfy+V(Txcosa_Tzsma_D_mgmn’Y) (9)
mg
By subtracting out the V sin - terms this cquation gives an cxpression for P,.
Pazv(Tzcosa—Tzsina—D) (10)
mg

Equation 10 gives P, as a function of velocity, thrust, angle of attack, and drag. Drag, however, is a function of
Mach numbser, altitude, and angle of attack. Thrust is a function of power lever angle (PLA). Therefore, it can be
scen that P, is a function of altitude, Mach number, angle of attack, and PLA and is independent of flightpath angle.

Given the cxpression for P;, it is possible to derive the cost function for a minimum time-to-energy path. The
minimum time-to-cnergy cost function is defined as (Erzbcrger, Barman, and McLean, 1975)

J=/Otdt (1

where J is a cost function and { is timc.



From cqualtion 5, specific powcr is defined as

dE,

P, = 12
Chal (12)
Substituting cquation 12 into equation 11 gives
E:. dE
J= / : 13
o P, (13)

To find the minimum for cquation 13, it is sufficicnt to minimize the quantity inside the intcgral (d—}’,”:‘). Since
the cnergy state approximation assumes that cost functions arc computed along curves of constant specific energy,
it is sufficicnt to minimizc thc quantity )% This is thc same as maximizing P;. The cost function for a minimum
time-to-cnergy trajectory, then, can be given by:

maximize J = P, (14)
Flight Envelope Calculations

The flight envelope can be calculated by solving the general cquations of motion (egs. 1 and 2) for trim in straight

and level flight. For this casc,y = 0,V = 0, and 4 = 0. Thercfore, the general equations of motion for a point
mass in the vertical plane arc reduced to:

Tecosa—T,sina— D=0 (15)
Tysina+ T,cosa+ L —mg=0 (16)

For actual implementation in a numecrical nonlincar cquation solver, the above cquations can be written as:

Tecosa—T,sina

fa(a,PLA 2, M) = = IR SR e
fula,PLA, 2, M) = L+ Ty S‘":g‘ Leosa -y - (18)

The trim cquations of motion, then, are defined by sctting f,(«, PLA, 2z, M) = 0 and f(a,PLA, 2, M) = 0. Note
that these equations make no atiempt to force the pitching moment equation to zero. While this is consistent with

the assumption of the vehicle as a point mass, the cffccts of the vehicle’s longitudinal surfaces are neglected:

The flight cnvelope is calculated in four parts (fig. 1): the angle-of-attack boundary, the thrust boundary, the
Mach boundary, and the dynamic pressurc boundary. The angle-of-attack boundary is defined by setting the angle of
attack cqual to the maximum anglc of attack of the vehicle. An altitude is picked, and the trim equations of motion
arc solved for that altitude. This gives

and
fv(alim,PLA,zref;M) = O (20)

This gives two cquations and two unknown variables, which can be solved using a numerical nonlincar
cquation solver.

7 fh(alim’PLA) zref; M) = 0 (19)

!
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The thrust boundary is calculated using the same method. The PLA is sct 1o its limiting value and a Mach number
is chosen for the calculations. The two trim equations of motion are then solved for the corresponding angle of attack

and altitude: B
fu(a,PLAm, 2, Myes) =0 (21

and
fu(a,PLA{m, 2, Mref) =0 (22)
The Mach boundary is given by sctting the Mach number cqual to the vehicle’s Mach limit,
The dynamic pressure boundary is calculated by solving the equation relating dynamic pressure and velocity,

using the dynamic pressure limit of the vchicle

2d:.
Vies = —‘%ﬂ (23)

where § is the dynamic pressure and p is the density of air. The Mach numbser is found from the resulting velocity,
and the trim cquations of motion arc solved using a reference altitude

fh(a;PLA:zref) M'ref) =0 (24)

and
fo(o,PLA 2,4, M, cg) = 0 (25

Trajectory Calculations

To calculate trajectories, the cost function is maximized along curves of constant specific energy within the flight
cnvelope of the vehicle. For the numcrical results in this paper, this was done in the following way:

1. An array of specific encrgy curves encompassing the vehicle’s flight envelope was determined (fig. 1).

2. A point along the first curve, rcpresenting the lowest value of specific encrgy, was chosen, yielding an altitude
and a corresponding Mach number.

3. This altitude and Mach number point was cntered into an optimization routine that varied angle of attack and
PLA to dctermine a maximum value for the cost function, specific power, at that point.

4. A diffcrent altitude and Mach number point on the first curve was then 'choscn, and the optimization routine
calculated a maximum valuc for the cost function at the new point.

5. These two maximum values for the cost function were compared and the higher of the two was stored.

6. The maximum cost function valuc was calculated at other points along the first cnergy curve and the highest
valuc found along the curve was storcd. This valuc identified the optimum point on that energy curve.

7. The optimum point was then calculated along the remaining energy curves within the flight envelope. The
altitude and Mach number path connecting these points defined the optimal trajectory. An optimal trajectory
is shown in figurc 1.

Parameters such as the time, range, and fuel used along the trajectory can be calculated between energy curves.
This is not the same as the analysis at cach point along an encrgy curve, which assumes stcady, horizontal flight. In-
formation for the total trajectory can be gained by summing the time, range, and fuel used between each
cnergy curve.



The time it takes to go from onc cnergy curve to another is given by

AE,
Al= 26
L P-’nvc ( )
Range (R) is then calculated bascd on the time
AR=VCOS’7At (27)

where « is given in cquation 7 Fmally, fucl uscd isa product of thc fucl flow (w) mulllphcd by thc time increment

Aw = AL e Ty

where w is fucl weight.

Aircraft Model

As stated previously, the encrgy state approximation models the aircrafl as a point mass in the vertical plane.
This paper does not assess the assumptions made about the aircraft, bul concentrates instead on assumptions made
about outside paramcters which will affect the trajectory calculations. These trajeclory calculations were based on a

mathematical modcl of a typical modem, supersonic ﬁ;,htcr aircraft. This model supplied lift, drag, thrust, and fuel
flow as a function of Mach numbcr, altitude, angle of attack, and PLA throughout the flight envelope.

MODELING ASSUMPTIONS

Atmospherlc Models '
Models of the atmosphere arc used to determine altitude-dependent parameters such as air density, pressure,
temperature, and speed of sound. This paper looks at the 1962 standard atmosphere (NASA/U.S. Air Force/U.S.
Weather Bureau, 1962), as well as models for a standard day, cold day, and hot day for Edwards Air Force Base,
California (Johnson, 1975). The cquations uscd to determine atmosphceric-dependent parameters are given here.

The gcncral cquat:on for lcmpcraturc is (NASA/U S Alr Forcc/U S Wcathcr Burcau 1962)

T= Tb+Lm(h hb) ”7(29)

Here, Ly, is the gradicnt of the temperature with geopotential altitude, Ay is the geopotential altitude at the base of
a particular layer by a specific valuc of L.y, and T} is the valuc of T at altitude hy. Temperature profiles for the four
day types arc given in figurc 2.

The gencral cquation for pressurc (P) is dependent on the value of the gradient (Ly,). If Lyn % 0, then P is

given by
P T, \# (30)
Py (n+LmH)
andif L, = 0, P is given by S e se
P gMo )
B "( R'T} 31

Here, H = h — hy, Mo is the mcan molccular weight, and R* is the universal gas constant.

i

o



Density is calculated from the pressure and emperature:

My P
= 32

and, finally, the speed of sound is calculatcd from the temperature:

’ {R‘T
- 33
a= A ( )

Acceleration due to gravity can be calculated several ways. The two ways that make sense for a model that
assumes a flat, nonrotating Earth are: 1) calculating gravity as a function of distance from the surface of the Earth,
and 2) giving gravity as a constant value, assuming no variation with altitude.

The acceleration due to gravity as a function of distance from the Earth is (NASA/U.S. Air Force/U.S. Weather
Burcau, 1962)

Gravitational Model Equations

GM
g= —CMe (34)
(R + 2)
where G is a gravitational constant, M, is the mass of the Earth, and R, is the radius of the Earth.
A simpler means of determining the acceleration duc to gravity is to assume that it does not vary with distance
from the Earth. The value for g, then, is given by the constant

f
g=32.174§i-7 (35)

Equations of Motion

The general equations of motion for a point mass in the vertical planc are given by equations 1 and 2. Several
assumptions can be made which affect the flight envelope and trajectory calculations in two distinct ways. First,
assumptions for the equations of motion will affect the calculations of the flight envelope. Second, the equations of
motion are used in calculating specific power, which is uscd as the cost function for calculating minimum time-to-
cnergy trajectories.

To calculate the flight cnvelope, the aircrafl is assumed to have straight-and-level flight at trim conditions, giving
cquations 15 and 16:

T.cosa—T,sina—- D=0

T,sina+ T,cosa+ L -mg=0
Thesc give the most general method of modcling the trim equations of motion used in calculating the vchicle’s
flight envelope.

If the thrust vector is assumed to be aligned with the z-body axis of the vehicle, then there is no thrust along the

z-body axis, and the equations simplify to
Tcosa—D=0 (36)

Tsina+L —mg=0 (37



To further simplify the cquations, it can be assumed that the angle of attack is small, in which case cos & & 1

and sin & & 0. This gives
T-D=0 (38)

L-mg=0 (39)

These same assumptions can be uscd in calculating specific power. The most general cquation for specific powcr
is given by cquation 10:

Tecosa—T,sin o« — D)
mg

P3=V<

Ifit is assumed that the thrust lics along the body axis of the vehicle, then T, is zero and the equation for specific
power becomcs: . . S .
Tcosa— D
P,=V (_co_a_) (40)
mg
Finally, assuming that the angle of attack is small gives:

T—D)

mg

(41)

P,=V<

Constraint Conditions

Constraint conditions limit the possible solutions to an optimization problem. The more constraints put on the
problem, the smaller the range of solutions becomes. Because constraint conditions are applied to the optimization,
the choice of the constraint conditions affects only the optimal trajectory and has no affect on the flight envelope.

The simplest case in this paper is an unconstrained trajectory. This means that there are no constraints on the
cost function, and only necessary limits arc put on angle of attack and PLA to kecp them within realistic values. The
maximization problem for optimizing unconstrained trajectory is

maximize J(a,PLA A, M)
subjcct to Qin < & < Omaz
PLA;y; < PLA <PLA,;;
The quantity J(«, PLA, A, M) is the cost function being optimized, specific powcer.
Because the cnergy statc approximation assumes that the aircraft is in straight and level flight at each point, this

can be reflected in the constraint conditions. To do this, a constraint equation that balances the equations of motion”
in the vertical direction is added. The maximization problem for optimizing trajectory constrained to level flight is:

maximizc J(a,PLA h M)
subject to fy(,PLAJA, M) =0
Umin < @ < Gmaz
PLA;; < PLA < PLA_;;

-
WL

Finally, the trajcctory can be constrained to realistic flightpath angles. This can also be thought of as constraining
the velocity in the vertical direction, so that the rate of climb () can never exceed the total velocity. This can be
scen from the definition of the flightpath angle

1 2

=sin”' —
g v
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The maximization problem for optimizing a trajectory constrained to realistic flightpath angles is

maximize J(a,PLA b, M)
subject 10 f,(«,PLA A, M) =0
~5<1<%
Qmin < & < Omagz
PLAig < PLA < PLApg;

RESULTS

Effects of Atmospheric Models

The effects of the atmospheric modcls on the trajectory and flight envelope are shown as a result of acrodynamic
cffects only; the effects of atmosphere on engine performance were not considered. The results show that the effects
on aerodynamics are significant. Figure 3 shows trajectorics for the four different atmospheric models analyzed:
standard day, Edwards cold day, Edwards standard day, and Edwards hot day. The flight envclope was calculated
for standard day and Edwards cold day only.

The choice of atmospheric model had an effect on the optimal trajcclory, especially in the high energy region,
(fig. 3). At the higher cnergies, the maximum P, occurs at a higher altitude for the warmer days. The differences
are due to the differences in densities at those altitudes between the atmospheric models. The temperature affects
the density, which affects the calculated lift and drag. This is also reflected in the flight cnvelope, which shows the
effects of atmospheric model on the dynamic pressure boundary, which is a function of the density of the air, as well
as the thrust boundary at high encrgics.

Figures 4(a), (b), and (c) show the cffccts of the different atmospherc models on the performance of the vehicle.
In agreement with the data shown on figure 3, figure 4(a) shows that the vehicle must climb higher on warmer days
in order to maximize its cost function. These higher altitudc trajectorics take more time and range (fig. 4(b)) and
use more fucl (fig. 4(c)) than the lower altitude trajectorics to achicve the same ecnergy. They are, therefore, less
cfficient. If a large degree of accuracy is required in the calculations, the atmosphere must be modeled as close to
the actual conditions as possible.

Effects of Gravitational Models

The effcct of the two different gravitational modcls on flight envelope and trajectory is shown in figure 5. The

two gravitational modcls are the altitude dependent model, based on a simple Newtonian force equation (eq. 34),

and the simpler model in which gravity is assumed constant (cq. 35). Figure 5 shows that the flight envelope and
optimum trajectory are overlaid for the two gravity models.

Effects of Equations of Motion

Figure 6 shows the cffects of the differences in the cquations of motion models on the flight envelope and optimal
trajectory. For the most general equations, the angle between the thrust vector and the body axis was increased until
a noticeable effect was seen on the trajectory calculations. This angle was determined to be approximately 6°. At
angles up to 6°, there was only a small effect on the flight envelope and trajectory. The only difference is in the
anglc-of-attack boundary of the flight envelope. The case with the thrust aligned with body axis overlays the case
with the 6° angle between thrust and body axis, but both are slightly different from the zcro angle-of-attack case.



Figures 7(a) and (b) show that simplifying the cquations of motion had little effect on the calculated performance
of the vehicle. It took a thrust misalignment angle of 6° to show an effect on performance, in which case a slight
incrcase in range and fuel used were needed to achicve the same encrgy statc as the simpler cases.

Effects of Constraint Conditions on Trajectory Calculations

Constraint conditions had some cffcct on the trajectory, as figure 8(a) shows. For the constrained to level flight
and the flightpath constrained cascs, a condition of the constraints was that the optimization pick a point where the
forces in the vertical direction arc balanced. Because of this, limiting the flightpath to realistic angles had the same
cffect as constraining the trajectory to level flight. The unconstrained casc, however, shows that a different optimal

trajectory was picked.

There is no significant diffcrence in aircraft performance between the constrained to level flight case and the
flightpath constraincd case. However, both differed from the unconstrained case. The constraint conditions caused
a less favorable but more realistic trajectory to be chosen. Figures 8(b) and (c) show that the constrained cases take
morc range and fuel to achieve the same cnergy state than the unconstraincd case does.

CONCLUSIONS

This paper examined the effects of various modeling assumptions on flight envelope gencration and optimal
trajectory estimation. The parameters investigated included atmospheric models, gravitational models, cquations of
motion, and constraint conditions.

The different types of atmospheric modcls showed a definite cffect on the trajectory, especially at high energies.
Of the four cxamined, the colder days had better performance characteristics. The warmer day models took more
time and distance to achicve the same encrgy state. If a large degree of accuracy is required in calculations, the
atmosphere should be modeled as closc to the actual conditions as possible.

The two gravitational modcls examined were gravity as a function of altitude and a constant valucd gravity force.
They showed no difference in cffect on flight envelope or trajectory calculations.

Three different scts of equations of motion were examined. The assumption of zero angle of attack showed
a noticcable but small effect on the angle-of-attack boundary of the flight envelope, but showed no effect on the
trajectory. For small angles between the thrust vector and the body axes, simplifying the equations of motion in the
vertical planc had very litde cffect on calculated performance. o o

- The different constraint conditions had an cffcct on the trajectory. Constraining the trajectory to level flight
limited the possible points to be chosen for the optimal path, and so made a difference in the optimal trajectory. The
further constraint of limiting the flightpath to rcasonable limits had no effect compared to the constrained to level
flight case. T

Ames Research Center

Dryden Flight Research Facility

National Aeronautics and Space Administration
Edwards, California, January 3, 1990
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