8 research outputs found
EFL1 mutations impair eIF6 release to cause Shwachman-Diamond syndrome.
Shwachman-Diamond syndrome (SDS) is a recessive disorder typified by bone marrow failure and predisposition to hematological malignancies. SDS is predominantly caused by deficiency of the allosteric regulator Shwachman-Bodian-Diamond syndrome that cooperates with elongation factor-like GTPase 1 (EFL1) to catalyze release of the ribosome antiassociation factor eIF6 and activate translation. Here, we report biallelic mutations in EFL1 in 3 unrelated individuals with clinical features of SDS. Cellular defects in these individuals include impaired ribosomal subunit joining and attenuated global protein translation as a consequence of defective eIF6 eviction. In mice, Efl1 deficiency recapitulates key aspects of the SDS phenotype. By identifying biallelic EFL1 mutations in SDS, we define this leukemia predisposition disorder as a ribosomopathy that is caused by corruption of a fundamental, conserved mechanism, which licenses entry of the large ribosomal subunit into translation.Medical Research Council, Bloodwise, Wellcome Trust, Ted’s Gang, The Connor Wright Shwachman Diamond Projec
Sonic Hedgehog Is a Remotely Produced Cue that Controls Axon Guidance Trans-axonally at a Midline Choice Point
At the optic chiasm choice point, ipsilateral retinal ganglion cells (RGCs) are repelled away from the midline by guidance cues, including Ephrin-B2 and Sonic Hedgehog (Shh). Although guidance cues are normally produced by cells residing at the choice point, the mRNA for Shh is not found at the optic chiasm. Here we show that Shh protein is instead produced by contralateral RGCs at the retina, transported anterogradely along the axon, and accumulates at the optic chiasm to repel ipsilateral RGCs. In vitro, contralateral RGC axons, which secrete Shh, repel ipsilateral RGCs in a Boc- and Smo-dependent manner. Finally, knockdown of Shh in the contralateral retina causes a decrease in the proportion of ipsilateral RGCs in a non-cell-autonomous manner. These findings reveal a role for axon-axon interactions in ipsilateral RGC guidance, and they establish that remotely produced cues can act at axon guidance midline choice points
A Disease-Causing Single Amino Acid Deletion in the Coiled-Coil Domain of RAD50 Impairs MRE11 Complex Functions in Yeast and Humans
The MRE11-RAD50-NBS1 complex plays a central role in response to DNA double-strand breaks. Here, we identify a patient with bone marrow failure and developmental defects caused by biallelic RAD50 mutations. One of the mutations creates a null allele, whereas the other (RAD50E1035Δ) leads to the loss of a single residue in the heptad repeats within the RAD50 coiled-coil domain. This mutation represents a human RAD50 separation-of-function mutation that impairs DNA repair, DNA replication, and DNA end resection without affecting ATM-dependent DNA damage response. Purified recombinant proteins indicate that RAD50E1035Δ impairs MRE11 nuclease activity. The corresponding mutation in Saccharomyces cerevisiae causes severe thermosensitive defects in both DNA repair and Tel1ATM-dependent signaling. These findings demonstrate that a minor heptad break in the RAD50 coiled coil suffices to impede MRE11 complex functions in human and yeast. Furthermore, these results emphasize the importance of the RAD50 coiled coil to regulate MRE11-dependent DNA end resection in humans.ISSN:2666-3864ISSN:2211-124
Impaired telomere integrity and rRNA biogenesis in PARN-deficient patients and knock-out models
PARN, poly(A)-specific ribonuclease, regulates the turnover of mRNAs and the maturation and stabilization of the hTR RNA component of telomerase. Biallelic PARN mutations were associated with Høyeraal–Hreidarsson (HH) syndrome, a rare telomere biology disorder that, because of its severity, is likely not exclusively due to hTR down-regulation. Whether PARN deficiency was affecting the expression of telomere-related genes was still unclear. Using cells from two unrelated HH individuals carrying novel PARN mutations and a human PARN knock-out (KO) cell line with inducible PARN complementation, we found that PARN deficiency affects both telomere length and stability and down-regulates the expression of TRF1, TRF2, TPP1, RAP1, and POT1 shelterin transcripts. Down-regulation of dyskerin-encoding DKC1 mRNA was also observed and found to result from p53 activation in PARN-deficient cells. We further showed that PARN deficiency compromises ribosomal RNA biogenesis in patients’ fibroblasts and cells from heterozygous Parn KO mice. Homozygous Parn KO however resulted in early embryonic lethality that was not overcome by p53 KO. Our results refine our knowledge on the pleiotropic cellular consequences of PARN deficienc
Inherited human Apollo deficiency causes severe bone marrow failure and developmental defects
International audienceInherited bone marrow failure syndromes (IBMFS) represent a group of disorders typified by impaired production of one or several blood cell types. The telomere biology disorders dyskeratosis congenita (DC) and its severe variant Høyeraal-Hreidarsson (HH) syndrome are rare IBMFS characterized by bone marrow failure, developmental defects, and various premature aging complications associated with critically short telomeres. Here we identified biallelic variants in the gene encoding the 5'-to-3' DNA exonuclease Apollo/SNM1B in three unrelated patients presenting with a DC/HH phenotype consisting of early onset hypocellular bone marrow failure, B and NK lymphopenia, developmental anomalies, microcephaly and/or intrauterine growth retardation. All three patients carry a homozygous or compound heterozygous (in combination with a null-allele) missense variant affecting the same residue L142 (L142F or L142S) located in the catalytic domain of Apollo. Apollo-deficient cells from patients exhibited spontaneous chromosome instability and impaired DNA repair that was complemented by CRISPR/Cas9-mediated gene correction. Furthermore, patients' cells showed signs of telomere fragility that were however not associated with global reduction of telomere length. Unlike patients' cells, human Apollo KO HT1080-cell lines showed strong telomere dysfunction accompanied by excessive telomere shortening, suggesting that the L142S and L142F Apollo variants are hypomorphic. Collectively, these findings define human Apollo as a genome caretaker and identify biallelic Apollo variants as a genetic cause of a hitherto unrecognized severe IBMFS combining clinical hallmarks of DC/HH with normal telomere length
Somatic genetic rescue of a germline ribosome assembly defect.
Indirect somatic genetic rescue (SGR) of a germline mutation is thought to be rare in inherited Mendelian disorders. Here, we establish that acquired mutations in the EIF6 gene are a frequent mechanism of SGR in Shwachman-Diamond syndrome (SDS), a leukemia predisposition disorder caused by a germline defect in ribosome assembly. Biallelic mutations in the SBDS or EFL1 genes in SDS impair release of the anti-association factor eIF6 from the 60S ribosomal subunit, a key step in the translational activation of ribosomes. Here, we identify diverse mosaic somatic genetic events (point mutations, interstitial deletion, reciprocal chromosomal translocation) in SDS hematopoietic cells that reduce eIF6 expression or disrupt its interaction with the 60S subunit, thereby conferring a selective advantage over non-modified cells. SDS-related somatic EIF6 missense mutations that reduce eIF6 dosage or eIF6 binding to the 60S subunit suppress the defects in ribosome assembly and protein synthesis across multiple SBDS-deficient species including yeast, Dictyostelium and Drosophila. Our data suggest that SGR is a universal phenomenon that may influence the clinical evolution of diverse Mendelian disorders and support eIF6 suppressor mimics as a therapeutic strategy in SDS.Blood Cancer UK, UK Medical Research Council, Kay Kendall Leukaemia Fund, a Wellcome Trust strategic award to the Cambridge Institute for Medical Research, a core support grant from the Wellcome Trust and MRC to the Wellcome Trust-Medical Research Council Cambridge Stem Cell
Institute, the Connor Wright Project, the Cambridge National Institute for Health Research Biomedical Research Centre and the European Cooperation in Science and Technology (COST) Action CA18233
“European Network for Innovative Diagnosis and treatment of Chronic Neutropenias, EuNet INNOCHRON”