11 research outputs found

    A general auditory bias for handling speaker variability in speech? Evidence in humans and songbirds

    Get PDF
    Different speakers produce the same speech sound differently, yet listeners are still able to reliably identify the speech sound. How listeners can adjust their perception to compensate for speaker differences in speech, and whether these compensatory processes are unique only to humans, is still not fully understood. In this study we compare the ability of humans and zebra finches to categorize vowels despite speaker variation in speech in order to test the hypothesis that accommodating speaker and gender differences in isolated vowels can be achieved without prior experience with speaker-related variability. Using a behavioral Go/No-go task and identical stimuli, we compared Australian English adults’ (naïve to Dutch) and zebra finches’ (naïve to human speech) ability to categorize / I/ and /ε/ vowels of an novel Dutch speaker after learning to discriminate those vowels from only one other speaker. Experiments 1 and 2 presented vowels of two speakers interspersed or blocked, respectively. Results demonstrate that categorization of vowels is possible without prior exposure to speaker-related variability in speech for zebra finches, and in non-native vowel categories for humans. Therefore, this study is the first to provide evidence for what might be a species-shared auditory bias that may supersede speaker-related information during vowel categorization. It additionally provides behavioral evidence contradicting a prior hypothesis that accommodation of speaker differences is achieved via the use of formant ratios. Therefore, investigations of alternative accounts of vowel normalization that incorporate the possibility of an auditory bias for disregarding inter-speaker variability are warranted.Publisher PDFPeer reviewe

    The extent and effects of patient involvement in pictogram design for written drug information : a short systematic review

    Get PDF
    This short review provides insight into the extent and effectiveness of patient involvement in the design and evaluation of pictograms to support patient drug information. Pubmed, CINAHL, Cochrane Library, Embase, PsycINFO, Academic Search Premier and Web of Science were searched systematically; the 73 included articles were evaluated with the MMAT. We see that, usually, non-patient end-users are involved in the design of pharmaceutical pictograms - patients are more commonly involved in the final evaluation of pictogram success. Repeated involvement of (non-)patients aids the design of effective pharmaceutical pictograms, although there is limited evidence for such effects on patient perception of drug information or health behaviour.Publisher PDFPeer reviewe

    A general auditory bias for handling speaker variability in speech? : evidence in humans and songbirds

    Get PDF
    Different speakers produce the same speech sound differently, yet listeners are still able to reliably identify the speech sound. How listeners can adjust their perception to compensate for speaker differences in speech, and whether these compensatory processes are unique only to humans, is still not fully understood. In this study we compare the ability of humans and zebra finches to categorize vowels despite speaker variation in speech in order to test the hypothesis that accommodating speaker and gender differences in isolated vowels can be achieved without prior experience with speaker-related variability. Using a behavioral Go/No-go task and identical stimuli, we compared Australian English adults’ (naïve to Dutch) and zebra finches’ (naïve to human speech) ability to categorize /I/ and /ε/ vowels of an novel Dutch speaker after learning to discriminate those vowels from only one other speaker. Experiments 1 and 2 presented vowels of two speakers interspersed or blocked, respectively. Results demonstrate that categorization of vowels is possible without prior exposure to speaker-related variability in speech for zebra finches, and in non-native vowel categories for humans. Therefore, this study is the first to provide evidence for what might be a species-shared auditory bias that may supersede speaker-related information during vowel categorization. It additionally provides behavioral evidence contradicting a prior hypothesis that accommodation of speaker differences is achieved via the use of formant ratios. Therefore, investigations of alternative accounts of vowel normalization that incorporate the possibility of an auditory bias for disregarding inter-speaker variability are warranted

    Gender Stereotypes in Science Education Resources: A Visual Content Analysis

    No full text
    <div><p>More men are studying and working in science fields than women. This could be an effect of the prevalence of gender stereotypes (e.g., science is for men, not for women). Aside from the media and people’s social lives, such stereotypes can also occur in education. Ways in which stereotypes are visible in education include the use of gender-biased visuals, language, teaching methods, and teachers’ attitudes. The goal of this study was to determine whether science education resources for primary school contained gender-biased visuals. Specifically, the total number of men and women depicted, and the profession and activity of each person in the visuals were noted. The analysis showed that there were more men than women depicted with a science profession and that more women than men were depicted as teachers. This study shows that there is a stereotypical representation of men and women in online science education resources, highlighting the changes needed to create a balanced representation of men and women. Even if the stereotypical representation of men and women in science is a true reflection of the gender distribution in science, we should aim for a more balanced representation. Such a balance is an essential first step towards showing children that both men and women can do science, which will contribute to more gender-balanced science and technology fields.</p></div

    Gender distribution for activity type – Children.

    No full text
    <p>N(people) = 2025. The activity data for boys and girls were also tested with a chi-squared test, which showed no significant differences between the number of boys and girls in any activity category.</p
    corecore