14 research outputs found

    High-throughput Single-Entity Analysis Methods: From Single-Cell Segmentation to Single-Molecule Force Measurements

    Get PDF
    This work is focused on the development of new microscopy-based analysis methods with single-entity resolution and high-throughput capabilities from the cellular to the molecular level to study biomembrane-associated interactions. Currently, there is a variety of methods available for obtaining quantitative information on cellular and molecular responses to external stimuli, but many of them lack either high sensitivity or high throughput. Yet, the combination of both aspects is critical for studying the weak but often complex and multivalent interactions at the interface of biological mem-branes. These interactions include binding of pathogens such as some viruses (e.g., influenza A virus, herpes simplex virus, and SARS-CoV-2), transmembrane signaling such as ligand-based oli-gomerization processes, and transduction of mechanical forces acting on cells. The goal of this work was to overcome the shortcomings of current methods by developing and es-tablishing new methods with unprecedented levels of automation, sensitivity, and parallelization. All methods are based on the combination of optical (video) microscopy followed by highly refined data analysis to study single cellular and molecular events, allowing the detection of rare events and the identification and quantification of cellular and molecular populations that would remain hidden in ensemble-averaging approaches. This work comprises four different projects. At the cellular level, two methods have been developed for single-cell segmentation and cell-by-cell readout of fluorescence reporter systems, mainly to study binding and inhibition of binding of viruses to host cells. The method developed in the first pro-ject features a high degree of automation and automatic estimation of sufficient analysis parameters (background threshold, segmentation sensitivity, and fluorescence cutoff) to reduce the manual ef-fort required for the analysis of cell-based infection assays. This method has been used for inhibition potency screening based on the IC50 value of various virus binding inhibitors. With the method used in the second project, the sensitivity of the first method is extended by providing an estimate of the number of fluorescent nanoparticles bound to the cells. The image resolution was chosen to allow many cells to be imaged in parallel. This allowed for the quantification of cell-to-cell heterogeneity of particle binding, at the expense of resolution of the individual fluorescent nanoparticles. To account for this, a new approach was developed and validated by simulations to estimate the number of fluo-rescent nanoparticles below the diffraction limit with an accuracy of about 80 to 100 %. In the third project, an approach for the analysis and refinement of two-dimensional single-particle tracking ex-periments was presented. It focused on the quality assessment of the derived tracks by providing a guide for the selection of an appropriate maximal linking distance. This tracking approach was used in the fourth project to quantify small molecule responses to hydrodynamic shear forces with sub-nm resolution. Here, the combination of TIRF microscopy, microfluidics, and single particle tracking enabled the development of a new single molecule force spectroscopy method with high resolution and parallelization capabilities. This method was validated by quantifying the mechanical response of well-defined PEG linkers and subsequently used to study the energy barriers of dissociation of mul-tivalent biotin-NeutrAvidin complexes under low (~ 1.5 to 12 pN) static forces. In summary, with this work, the repertoire of appropriate methods for high-throughput investigation of the properties and interactions of cells, nanoparticles, and molecules at single resolution is expand-ed. In the future, the methods developed here will be used to screen for additional virus binding inhib-itors, to study the oligomerization of membrane receptors on cells and model membranes, and to quantify the mechanical response of force-bearing proteins and ligand-receptor complexes under low force conditions

    A fast open-source Fiji-macro to quantify virus infection and transfection on single-cell level by fluorescence microscopy

    Get PDF
    The ability to automatically analyze large quantities of image data is a valuable tool for many biochemical assays, as it rapidly provides reliable data. Here, we describe a fast and robust Fiji macro for the analysis of cellular fluorescence microscopy images with single-cell resolution. The macro presented here was validated by successful reconstruction of fluorescent and non-fluorescent cell mixing ratios (for fluorescence fractions ranging between 0 and 100%) and applied to quantify the efficiency of transfection and virus infection inhibition. It performed well compared with manually obtained image quantification data. Its use is not limited to the cases shown here but is applicable for most monolayered cellular assays with nuclei staining. We provide a detailed description of how the macro works and how it is applied to image data. It can be downloaded free of charge and may be used by and modified according to the needs of the user. • Rapid, simple, and reproducible segmentation of eukaryotic cells in confluent cellular assays • Open-source software for use without technical or computational expertise • Single-cell analysis allows identification and quantification of virus infected cell populations and infection inhibitio

    Topology-Matching Design of an Influenza-Neutralizing Spiky Nanoparticle-Based Inhibitor with a Dual Mode of Action

    Get PDF
    In this study, we demonstrate the concept of "topology-matching design" for virus inhibitors. With the current knowledge of influenzaA virus (IAV), we designed a nanoparticle-based inhibitor (nano-inhibitor) that has a matched nanotopology to IAV virions and shows heteromultivalent inhibitory effects on hemagglutinin and neuraminidase. The synthesized nano-inhibitor can neutralize the viral particle extracellularly and block its attachment and entry to the host cells. The virus replication was significantly reduced by 6 orders of magnitude in the presence of the reverse designed nano-inhibitors. Even when used 24hours after the infection, more than 99.999% inhibition is still achieved, which indicates such a nano-inhibitor might be a potent antiviral for the treatment of influenza infection

    Surface-Initiated Grafting of Dendritic Polyglycerol from Mussel-Inspired Adhesion-Layers for the Creation of Cell-Repelling Coatings

    Get PDF
    Biofouling is a major challenge in the application of textiles, biosensors, and biomedical implants. In the current work, a straightforward method for the solvent-free polymerization of antifouling dendritic polyglycerol (dPG) from mussel-inspired dendritic polyglycerol (MI-dPG) coatings on hydrophilic titanium dioxide (TiO2) and hydrophobic polydimethylsiloxane (PDMS) is reported. Surface characterization is performed by static water contact angle (CA) measurements, X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). Significant lower CA values are obtained after dPG grafting from MI-dPG-coated TiO2 and MI-dPG coated PDMS. Furthermore, XPS shows a time-dependent increase of the C-O bond content upon dPG grafting from MI-dPG-coated TiO2 and MI-dPG-coated PDMS. Analysis of the surface morphology by SEM shows a clear time-dependent increase in the surface roughness upon dPG grafting from MI-dPG-coated TiO2 and MI-dPG-coated PDMS. When the viability of two adhesive cell types is studied via LIVE/DEAD staining, a strong reduction in the cell density is observed after the dPG grafting from MI-dPG-coated TiO2 and MI-dPG-coated PDMS (a decrease of >95% in all cases). The combined results show that biocompatible but highly cell-repelling surfaces are efficiently constructed via the grafting of dPG from MI-dPG-coated TiO2 and MI-dPG-coated PDMS

    Microfluidics-Based Force Spectroscopy Enables High-Throughput Force Experiments with Sub-Nanometer Resolution and Sub-Piconewton Sensitivity

    Get PDF
    Several techniques have been established to quantify the mechanicals of single molecules. However, most of them show only limited capabilities of parallelizing the measurement by performing many individual measurements simultaneously. Herein, a microfluidics-based single-molecule force spectroscopy method, which achieves sub-nanometer spatial resolution and sub-piconewton sensitivity and is capable of simultaneously quantifying hundreds of single-molecule targets in parallel, is presented. It relies on a combination of total internal reflection microscopy and microfluidics, in which monodisperse fluorescent beads are immobilized on the bottom of a microfluidic channel by macromolecular linkers. Application of a flow generates a well-defined shear force acting on the beads, whereas the nanomechanical linker response is quantified based on the force-induced displacement of individual beads. To handle the high amount of data generated, a cluster analysis which is capable of a semi-automatic identification of measurement artifacts and molecular populations is implemented. The method is validated by probing the mechanical response polyethylene glycol linkers and binding strength of biotin–NeutrAvidin complexes. Two energy barriers (at 3 and 5.7 Å, respectively) in the biotin–NeutrAvidin interaction are resolved and the unfolding behavior of talin's rod domain R3 in the force range between 1 to ≈10 pN is probed.publishedVersionPeer reviewe

    Expanding The Genetic Code

    Get PDF
    Karsten L, Bergen D, Drake C, et al. Expanding The Genetic Code. Bielefeld University; 2017.We worked in many different scientific fields to find suitable ways for the translational incorporate of non-canonical amino acids into proteins. Repurposing existing codons or incorporating new bases are two possible ways. We realized both ways to expand the genetic code of Escherichia coli. The repurposing of a codon for the incorporation of a non-canonical amino acid (ncAA) is possible using the rarely used amber stop codon UAG or other rarely used codons like the leucine codon CUA. To incorporate a non-canonical amino acid using these codons, an orthogonal tRNA/aminoacyl-tRNA synthetase (tRNA/aaRS) pair is necessary, which can charge the ncAA to the tRNA. We designed and synthetized the novel ncAA Nγ‑2‑cyanobenzothiazol‑6‑yl‑L‑asparagine (CBT-asparagine). This ncAA has the chemical ability of perform a highly specific covalent binding reaction, which we wanted to incorporate into our target protein. Therefore, we created a library of aaRS with random mutagenized amino acid binding sites and a selection system to select for the aaRS that specifically incorporates the ncAA. In parallel to the libary and selection based approach, we modeled the aaRS which could incorporate our new amino acid CBT-asparagine. We demonstrated that both ways are suitable for the evolution of aaRS. Although incorporation of ncAAs through the amber codon works, there are challenges associated with this approach. The repurposing of codons leads to the decrease of the growth rate of E. coli and it is only feasible to incorporate up to two different ncAAs. Therefore, we took a new way to incorporate ncAAs. The incorporation of an unnatural base pair into the DNA generates 64 new codons. Our first challenge was the uptake of the unnatural base from the media, because E.coli has no nucleoside triphosphate transporter and is not able to synthetize the bases itself. We cloned a nucleoside triphosphate transporter that enables the uptake of both bases from the media. Furthermore, we analyzed the transcriptome of the plant Croton tiglium, which produces the unnatural base isoG. The transcriptome revealed an enzyme for the biosynthesis, which was cloned and characterized for the biosynthesis of isoG in E. coli. To detect the unnatural base we developed two orthogonal systems. A restriction experiment based on the software tool M.A.X. and an adaption of the Oxford Nanopore sequencing, which were combined into one software suite. To demonstrate the possibilities offered by the incorporation of ncAAs, we developed a toolbox containing five different tools. We chose seven different ncAAs for these five tools and demonstrated interesting applications for them. These ncAAs can be used for various approaches in basic research, medicine and manufacturing. Furthermore, with our submitted parts, every iGEM team can incorporate these ncAAs into their target proteins. Regarding our project, two of the ncAAs that are part of our toolbox perform an autocatalytic reaction upon irradiation with ultraviolet light. Therefore, we decided to build our own LED panel that allows us to perform experiments with these non‑canonical amino acids under reproducible irradiation conditions

    Dynamic microfluidical single-cell cultivation of mammalian cell lines. From experiment to analysis

    No full text
    Schmitz J, Kerkhoff Y, Noll T, Grünberger A. Dynamic microfluidical single-cell cultivation of mammalian cell lines. From experiment to analysis. Presented at the CeBiTec Symposium 2018, Bielefeld

    Towards dynamic single-cell cultivation systems for industrially relevant mammalian cell lines

    No full text
    Schmitz J, Kerkhoff Y, Noll T, Kohlheyer D, Grünberger A. Towards dynamic single-cell cultivation systems for industrially relevant mammalian cell lines. Presented at the BioProcessing Days 2018, Recklinghausen

    Image analysis-based quantification of fungal sporulation by automatic conidia counting and gray value correlation

    No full text
    Muskat L, Kerkhoff Y, Humbert P, Nattkemper TW, Eilenberg J, Patel AV. Image analysis-based quantification of fungal sporulation by automatic conidia counting and gray value correlation. MethodsX. 2021: 101218

    Heteromultivalent topology-matched nanostructures as potent and broad-spectrum influenza A virus inhibitors

    Get PDF
    Here, we report the topology-matched design of heteromultivalent nanostructures as potent and broad-spectrum virus entry inhibitors based on the host cell membrane. Initially, we investigate the virus binding dynamics to validate the better binding performance of the heteromultivalent moieties as compared to homomultivalent ones. The heteromultivalent binding moieties are transferred to nanostructures with a bowl-like shape matching the viral spherical surface. Unlike the conventional homomultivalent inhibitors, the heteromultivalent ones exhibit a half maximal inhibitory concentration of 32.4 ± 13.7 μg/ml due to the synergistic multivalent effects and the topology-matched shape. At a dose without causing cellular toxicity, >99.99% reduction of virus propagation has been achieved. Since multiple binding sites have also been identified on the S protein of SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), we envision that the use of heteromultivalent nanostructures may also be applied to develop a potent inhibitor to prevent coronavirus infection.Peer Reviewe
    corecore