137 research outputs found
The Effect of Body Fat Distribution on Systemic Sclerosis
Mendelian randomization; Obesity; Systemic sclerosisAleatorización mendeliana; Obesidad; Esclerosis sistémicaAleatorització mendeliana; Obesitat; Esclerosi sistèmicaObesity contributes to a chronic proinflammatory state, which is a known risk factor to develop immune-mediated diseases. However, its role in systemic sclerosis (SSc) remains to be elucidated. Therefore, we conducted a two-sample mendelian randomization (2SMR) study to analyze the effect of three body fat distribution parameters in SSc. As instrumental variables, we used the allele effects described for single nucleotide polymorphisms (SNPs) in different genome-wide association studies (GWAS) for SSc, body mass index (BMI), waist-to-hip ratio (WHR) and WHR adjusted for BMI (WHRadjBMI). We performed local (pHESS) and genome-wide (LDSC) genetic correlation analyses between each of the traits and SSc and we applied several Mendelian randomization (MR) methods (i.e., random effects inverse-variance weight, MR-Egger regression, MR pleiotropy residual sum and outlier method and a multivariable model). Our results show no genetic correlation or causal relationship between any of these traits and SSc. Nevertheless, we observed a negative causal association between WHRadjBMI and SSc, which might be due to the effect of gastrointestinal complications suffered by the majority of SSc patients. In conclusion, reverse causality might be an especially difficult confounding factor to define the effect of obesity in the onset of SSc.This work was supported by grant RTI2018101332-B-100 funded by MCIN/AEI/10.13039/501100011033 and by “ERDF A way of making Europe” funded by the European Union. Red de Investigación en Inflamación y Enfermedades Reumáticas (RIER) from Instituto de Salud Carlos III (RD16/0012/0013). 115565. LB-C was funded by Grant IJC2018-038026-I funded by MCIN/AEI/10.13039/501100011033. MA-H is a recipient of a Miguel Servet fellowship (CP21/00132) from Instituto de Salud Carlos III (Spanish Ministry of Science and Innovation). EL-I was funded by Grant IJC2019-040080-I funded by MCIN/AEI/10.13039/501100011033. GV-M was funded by Grant PRE2019-087586 funded by MCIN/AEI/10.13039/501100011033 and by “ESF Investing in your future”
Comprehensive analysis of the major histocompatibility complex in systemic sclerosis identifies differential HLA associations by clinical and serological subtypes
Autoantibodies; Genetic; PolymorphismAutoanticuerpos; Genética; PolimorfismoAutoanticossos; Genètica; PolimorfismeObjective The greatest genetic effect reported for systemic sclerosis (SSc) lies in the major histocompatibility complex (MHC) locus. Leveraging the largest SSc genome-wide association study, we aimed to fine-map this region to identify novel human leucocyte antigen (HLA) genetic variants associated with SSc susceptibility and its main clinical and serological subtypes.
Methods 9095 patients with SSc and 17 584 controls genome-wide genotyped were used to impute and test single-nucleotide polymorphisms (SNPs) across the MHC, classical HLA alleles and their composite amino acid residues. Additionally, patients were stratified according to their clinical and serological status, namely, limited cutaneous systemic sclerosis (lcSSc), diffuse cutaneous systemic sclerosis (dcSSc), anticentromere (ACA), antitopoisomerase (ATA) and anti-RNApolIII autoantibodies (ARA).
Results Sequential conditional analyses showed nine SNPs, nine classical alleles and seven amino acids that modelled the observed associations with SSc. This confirmed previously reported associations with HLA-DRB1*11:04 and HLA-DPB1*13:01, and revealed a novel association of HLA-B*08:01. Stratified analyses showed specific associations of HLA-DQA1*02:01 with lcSSc, and an exclusive association of HLA-DQA1*05:01 with dcSSc. Similarly, private associations were detected in HLA-DRB1*08:01 and confirmed the previously reported association of HLA-DRB1*07:01 with ACA-positive patients, as opposed to the HLA-DPA1*02:01 and HLA-DQB1*03:01 alleles associated with ATA presentation.
Conclusions This study confirms the contribution of HLA class II and reveals a novel association of HLA class I with SSc, suggesting novel pathways of disease pathogenesis. Furthermore, we describe specific HLA associations with SSc clinical and serological subtypes that could serve as biomarkers of disease severity and progression.This work was supported by the Spanish Ministry of Science and Innovation (grant ref. SAF2015-66761-P and RTI20181013 (32-B-100)), Red de Investigación en Inflamación y Enfermedades Reumáticas from Instituto de Salud Carlos III (RD16/0012/0013) and grants from National Institutes of Health (R01AR073284) and DoD (W81XWH-16-1-0296). MAH was funded by the Spanish Ministry of Science and Innovation through the Juan de la Cierva Incorporacion program (ref. IJC2018-035131-I). GO, AB and ALH were supported by the NIHR Manchester Biomedical Research Centre and Versus Arthritis (grant ref 21754)
Complement component C4 structural variation and quantitative traits contribute to sex-biased vulnerability in systemic sclerosis
Genetic association study; Quantitative trait; Systemic sclerosisEstudi d'associació genètica; Tret quantitatiu; Esclerosi sistèmicaEstudio de asociación genética; Rasgo cuantitativo; Esclerosis sistémicaCopy number (CN) polymorphisms of complement C4 play distinct roles in many conditions, including immune-mediated diseases. We investigated the association of C4 CN with systemic sclerosis (SSc) risk. Imputed total C4, C4A, C4B, and HERV-K CN were analyzed in 26,633 individuals and validated in an independent cohort. Our results showed that higher C4 CN confers protection to SSc, and deviations from CN parity of C4A and C4B augmented risk. The protection contributed per copy of C4A and C4B differed by sex. Stronger protection was afforded by C4A in men and by C4B in women. C4 CN correlated well with its gene expression and serum protein levels, and less C4 was detected for both in SSc patients. Conditioned analysis suggests that C4 genetics strongly contributes to the SSc association within the major histocompatibility complex locus and highlights classical alleles and amino acid variants of HLA-DRB1 and HLA-DPB1 as C4-independent signals.This work was supported by grant RTI2018101332-B-100 funded by MCIN/AEI/10.13039/501100011033 by “ERDF A way of making Europe”, Red de Investigación en Inflamación y Enfermedades Reumáticas (RIER) from Instituto de Salud Carlos III (RD16/0012/0013). This work has received funding from the Innovative Medicines Initiative 1 & 2 Joint Undertaking (JU) under grant agreements No 115565 (PRECISESADS) and No 831434 (3TR). The JU receives support from the European Union’s FP7 and Horizon 2020 research and innovation programs and EFPIA. MAH was supported by the Juan de la Cierva Incorporacion program, grant IJC2018-035131-I funded by MCIN/AEI/10.13039/501100011033. This work is dedicated to the memory of Annette Kerick (1945-2020)
GWAS loci associated with Chagas cardiomyopathy influences DNA methylation levels
Cardiomyopathies; Genomics; Chagas diseaseCardiomiopatías; Genómica; Enfermedad de ChagasMiocardiopaties; Genòmica; Malaltia de ChagasA recent genome-wide association study (GWAS) identified a locus in chromosome 11 associated with the chronic cardiac form of Chagas disease. Here we aimed to elucidate the potential functional mechanism underlying this genetic association by analyzing the correlation among single nucleotide polymorphisms (SNPs) and DNA methylation (DNAm) levels as cis methylation quantitative trait loci (cis-mQTL) within this region. A total of 2,611 SNPs were tested against 2,647 DNAm sites, in a subset of 37 chronic Chagas cardiomyopathy patients and 20 asymptomatic individuals from the GWAS. We identified 6,958 significant cis-mQTLs (False Discovery Rate [FDR]<0.05) at 1 Mb each side of the GWAS leading variant, where six of them potentially modulate the expression of the SAC3D1 gene, the reported gene in the previous GWAS. In addition, a total of 268 cis-mQTLs showed differential methylation between chronic Chagas cardiomyopathy patients and asymptomatic individuals. The most significant cis-mQTLs mapped in the gene bodies of POLA2 (FDR = 1.04x10-11), PLAAT3 (FDR = 7.22x10-03), and CCDC88B (FDR = 1.89x10-02) that have been associated with cardiovascular and hematological traits in previous studies. One of the most relevant interactions correlated with hypermethylation of CCDC88B. This gene is involved in the inflammatory response, and its methylation and expression levels have been previously reported in Chagas cardiomyopathy. Our findings support the functional relevance of the previously associated genomic region, highlighting the regulation of novel genes that could play a role in the chronic cardiac form of the disease.This research was supported by grants from Programa Iberoamericano de ciencia y tecnología para el desarrollo (RIMGECH - 217RT0524) to Chagas Genetics CYTED Network. MAH was supported by Ministerio de Ciencia e Innovación-Juan de la Cierva fellowship (IJC2018-035131-I). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript
Genome-Wide Massively Parallel Sequencing of Formaldehyde Fixed-Paraffin Embedded (FFPE) Tumor Tissues for Copy-Number- and Mutation-Analysis
Cancer re-sequencing programs rely on DNA isolated from fresh snap frozen tissues, the preparation of which is combined with additional preservation efforts. Tissue samples at pathology departments are routinely stored as formalin-fixed and paraffin-embedded (FFPE) samples and their use would open up access to a variety of clinical trials. However, FFPE preparation is incompatible with many down-stream molecular biology techniques such as PCR based amplification methods and gene expression studies.
Methodology/Principal Findings
Here we investigated the sample quality requirements of FFPE tissues for massively parallel short-read sequencing approaches. We evaluated key variables of pre-fixation, fixation related and post-fixation processes that occur in routine medical service (e.g. degree of autolysis, duration of fixation and of storage). We also investigated the influence of tissue storage time on sequencing quality by using material that was up to 18 years old. Finally, we analyzed normal and tumor breast tissues using the Sequencing by Synthesis technique (Illumina Genome Analyzer, Solexa) to simultaneously localize genome-wide copy number alterations and to detect genomic variations such as substitutions and point-deletions and/or insertions in FFPE tissue samples.
Conclusions/Significance
The application of second generation sequencing techniques on small amounts of FFPE material opens up the possibility to analyze tissue samples which have been collected during routine clinical work as well as in the context of clinical trials. This is in particular important since FFPE samples are amply available from surgical tumor resections and histopathological diagnosis, and comprise tissue from precursor lesions, primary tumors, lymphogenic and/or hematogenic metastases. Large-scale studies using this tissue material will result in a better prediction of the prognosis of cancer patients and the early identification of patients which will respond to therapy
Microarray analysis of tumor necrosis factor α induced gene expression in U373 human glioblastoma cells
BACKGROUND: Tumor necrosis factor α (TNF) is able to induce a variety of biological responses in the nervous system including inflammation and neuroprotection. Human astrocytoma cells U373 have been widely used as a model for inflammatory cytokine actions in the nervous system. Here we used cDNA microarrays to analyze the time course of the transcriptional response from 1 h up to 12 h post TNF treatment in comparison to untreated U373 cells. TNF activated strongly the NF-κB transcriptional pathway and is linked to other pathways via the NF-κB target genes JUNB and IRF-1. Part of the TNF-induced gene expression could be inhibited by pharmacological inhibition of NF-κB with pyrrolidine-dithiocarbamate (PDTC). NF-κB comprises a family of transcription factors which are involved in the inducible expression of genes regulating neuronal survival, inflammatory response, cancer and innate immunity. RESULTS: In this study we show that numerous genes responded to TNF (> 880 from 7500 tested) with a more than two-fold induction rate. Several novel TNF-responsive genes (about 60% of the genes regulated by a factor ≥ 3) were detected. A comparison of our TNF-induced gene expression profiles of U373, with profiles from 3T3 and Hela cells revealed a striking cell-type specificity. SCYA2 (MCP-1, CCL2, MCAF) was induced in U373 cells in a sustained manner and at the highest level of all analyzed genes. MCP-1 protein expression, as monitored with immunofluorescence and ELISA, correlated exactly with microarray data. Based on these data and on evidence from literature we suggest a model for the potential neurodegenerative effect of NF-κB in astroglia: Activation of NF-κB via TNF results in a strongly increased production of MCP-1. This leads to a exacerbation of neurodegeneration in stoke or Multiple Sclerosis, presumably via infiltration of macrophages. CONCLUSIONS: The vast majority of genes regulated more than 3-fold were previously not linked to tumor necrosis factor α as a search in published literature revealed. Striking co-regulation for several functional groups such as proteasome and ribosomal proteins were detected
Epigenome-Wide Comparative Study Reveals Key Differences Between Mixed Connective Tissue Disease and Related Systemic Autoimmune Diseases
Mixed Connective Tissue Disease (MCTD) is a rare complex systemic autoimmune disease (SAD) characterized by the presence of increased levels of anti-U1 ribonucleoprotein autoantibodies and signs and symptoms that resemble other SADs such as systemic sclerosis (SSc), rheumatoid arthritis (RA), and systemic lupus erythematosus (SLE). Due to its low prevalence, this disease has been very poorly studied at the molecular level. We performed for the first time an epigenome-wide association study interrogating DNA methylation data obtained with the Infinium MethylationEPIC array from whole blood samples in 31 patients diagnosed with MCTD and 255 healthy subjects. We observed a pervasive hypomethylation involving 170 genes enriched for immune-related function such as those involved in type I interferon signaling pathways or in negative regulation of viral genome replication. We mostly identified epigenetic signals at genes previously implicated in other SADs, for example MX1, PARP9, DDX60, or IFI44L, for which we also observed that MCTD patients exhibit higher DNA methylation variability compared with controls, suggesting that these sites might be involved in plastic immune responses that are relevant to the disease. Through methylation quantitative trait locus (meQTL) analysis we identified widespread local genetic effects influencing DNA methylation variability at MCTD-associated sites. Interestingly, for IRF7, IFI44 genes, and the HLA region we have evidence that they could be exerting a genetic risk on MCTD mediated through DNA methylation changes. Comparison of MCTD-associated epigenome with patients diagnosed with SLE, or Sjogren's Syndrome, reveals a common interferon-related epigenetic signature, however we find substantial epigenetic differences when compared with patients diagnosed with rheumatoid arthritis and systemic sclerosis. Furthermore, we show that MCTD-associated CpGs are potential epigenetic biomarkers with high diagnostic value. Our study serves to reveal new genes and pathways involved in MCTD, to illustrate the important role of epigenetic modifications in MCTD pathology, in mediating the interaction between different genetic and environmental MCTD risk factors, and as potential biomarkers of SADs
FUNCTIONAL GENOMICS IN PRIMARY T CELLS AND MONOCYTES IDENTIFIES MECHANISMS BY WHICH GENETIC SUSCEPTIBILITY LOCI INFLUENCE SYSTEMIC SCLEROSIS RISK.
Congresos y Conferencias: Comunicación de congreso- Conferencia invitada.Winner of EULAR 2022 Abstract Award in the category of Basic Scienc
Complement component C4 structural variation and quantitative traits contribute to sex-biased vulnerability in systemic sclerosis
Copy number (CN) polymorphisms of complement C4 play distinct roles in many conditions, including immune-mediated diseases.
We investigated the association of C4 CN with systemic sclerosis (SSc) risk. Imputed total C4, C4A, C4B, and HERV-K CN were
analyzed in 26,633 individuals and validated in an independent cohort. Our results showed that higher C4 CN confers protection to
SSc, and deviations from CN parity of C4A and C4B augmented risk. The protection contributed per copy of C4A and C4B differed by
sex. Stronger protection was afforded by C4A in men and by C4B in women. C4 CN correlated well with its gene expression and
serum protein levels, and less C4 was detected for both in SSc patients. Conditioned analysis suggests that C4 genetics strongly
contributes to the SSc association within the major histocompatibility complex locus and highlights classical alleles and amino acid
variants of HLA-DRB1 and HLA-DPB1 as C4-independent signals.MCIN/AEI by "ERDF A way of making Europe" RTI2018101332-B-100Red de Investigacion en Inflamacion y Enfermedades Reumaticas (RIER) from Instituto de Salud Carlos III RD16/0012/0013Innovative Medicines Initiative 1 & 2 Joint Undertaking (JU) 115565
831434European Union's FP7 and Horizon 2020 research and innovation programsEFPIAJuan de la Cierva Incorporacion program - MCIN/AEI IJC2018-035131-
Identification of Mechanisms by Which Genetic Susceptibility Loci Influence Systemic Sclerosis Risk Using Functional Genomics in Primary T Cells and Monocytes
We greatly acknowledge the expert technical assistance of Sofía Vargas Roldán at the Institute of Parasitology and Biomedicine López-Neyra (IPBLN–CSIC), as well as the assistance given by Information Technology Services and the use of the Computational Shared Facility at The University of Manchester, UK
- …