23 research outputs found

    Ostreid herpesvirus 1 detection and relationship with Crassostrea gigas spat mortality in France between 1998 and 2006

    Get PDF
    Since its molecular characterisation, Ostreid herpesvirus 1 (OsHV-1) has been regularly detected in Crassostrea gigas in France. Although its pathogenicity was demonstrated on larval stages, its involvement during mortality outbreaks at the juvenile stage was highly suspected but not evidenced. To investigate mortality outbreaks, the French National Network for Surveillance and Monitoring of Mollusc Health (REPAMO) carried out two surveys in juvenile C. gigas. The first survey lasted from 1998 to 2006 and was an epidemiological inquiry occurring when oyster farmers reported mortality outbreaks. The second survey, a longitudinal one, was set up in 1998 to complete the network observations on OsHV-1. Data analysis showed a specific pattern of mortality outbreaks associated with OsHV-1 detection. Ostreid herpesvirus 1 detection mainly appeared during the summer, suggesting the influence of the seawater temperature on its occurrence. It mostly presented a patchy distribution in the field in contrast to the nursery. Significant relationship between OsHV-1 detection and spat mortality was found, preferentially in sheltered and closed environments. The longitudinal survey confirmed most of the network observations. Although subsequent works particularly epidemiological surveys would be useful to confirm the causal link between the detection of OsHV-1 and the mortality outbreaks in juvenile C. gigas, the role of OsHV-1 in oyster mortality is progressing

    Staphylococcus aureus Host Cell Invasion and Virulence in Sepsis Is Facilitated by the Multiple Repeats within FnBPA

    Get PDF
    Entry of Staphylococcus aureus into the bloodstream can lead to metastatic abscess formation and infective endocarditis. Crucial to the development of both these conditions is the interaction of S. aureus with endothelial cells. In vivo and in vitro studies have shown that the staphylococcal invasin FnBPA triggers bacterial invasion of endothelial cells via a process that involves fibronectin (Fn) bridging to α5β1 integrins. The Fn-binding region of FnBPA usually contains 11 non-identical repeats (FnBRs) with differing affinities for Fn, which facilitate the binding of multiple Fn molecules and may promote integrin clustering. We thus hypothesized that multiple repeats are necessary to trigger the invasion of endothelial cells by S. aureus. To test this we constructed variants of fnbA containing various combinations of FnBRs. In vitro assays revealed that endothelial cell invasion can be facilitated by a single high-affinity, but not low-affinity FnBR. Studies using a nisin-inducible system that controlled surface expression of FnBPA revealed that variants encoding fewer FnBRs required higher levels of surface expression to mediate invasion. High expression levels of FnBPA bearing a single low affinity FnBR bound Fn but did not invade, suggesting that FnBPA affinity for Fn is crucial for triggering internalization. In addition, multiple FnBRs increased the speed of internalization, as did higher expression levels of FnBPA, without altering the uptake mechanism. The relevance of these findings to pathogenesis was demonstrated using a murine sepsis model, which showed that multiple FnBRs were required for virulence. In conclusion, multiple FnBRs within FnBPA facilitate efficient Fn adhesion, trigger rapid bacterial uptake and are required for pathogenesis

    Allosteric Regulation of Fibronectin/α5β1 Interaction by Fibronectin-Binding MSCRAMMs

    Get PDF
    Citation: Liang, X. W., Garcia, B. L., Visai, L., Prabhakaran, S., Meenan, N. A. G., Potts, J. R., . . . Hook, M. (2016). Allosteric Regulation of Fibronectin/alpha(5)beta(1) Interaction by Fibronectin-Binding MSCRAMMs. Plos One, 11(7), 17. doi:10.1371/journal.pone.0159118Adherence ofmicrobes to host tissues is a hallmark of infectious disease and is often mediated by a class of adhesins termed MSCRAMMs (Microbial Surface Components Recognizing Adhesive Matrix Molecules). Numerous pathogens express MSCRAMMs that specifically bind the heterodimeric human glycoprotein fibronectin (Fn). In addition to roles in adhesion, Fn-binding MSCRAMMs exploit physiological Fn functions. For example, several pathogens can invade host cells by a mechanism whereby MSCRAMM-bound Fn bridges interaction with alpha(5)beta(1) integrin. Here, we investigate two Fn-binding MSCRAMMs, FnBPA (Staphylococcus aureus) and BBK32 (Borrelia burgdorferi) to probe structure-activity relationships of MSCRAMM-induced Fn/alpha(5)beta(1) integrin activation. Circular dichroism, fluorescence resonance energy transfer, and dynamic light scattering techniques uncover a conformational rearrangement of Fn involving domains distant from the MSCRAMM binding site. Surface plasmon resonance experiments demonstrate a significant enhancement of Fn/alpha(5)beta(1) integrin affinity in the presence of FnBPA or BBK32. Detailed kinetic analysis of these interactions reveal that this change in affinity can be attributed solely to an increase in the initial Fn/alpha(5)beta(1) on-rate and that this rate-enhancement is dependent on high-affinity Fn-binding by MSCRAMMs. These data implicate MSCRAMM-induced perturbation of specific intramolecular contacts within the Fn heterodimer resulting in activation by exposing previously cryptic alpha(5)beta(1) interaction motifs. By correlating structural changes in Fn to a direct measurement of increased Fn/alpha(5)beta(1) affinity, this work significantly advances our understanding of the structural basis for the modulation of integrin function by Fn-binding MSCRAMMs

    A semi-empirical approach to link macroscopic parameters to microstructure of fibrous materials

    No full text
    International audienceAt macro-scale, semi-phenomenological models are used to describe the acoustic behavior of porous materials. At micro-scale, manufacturers, familiar with a manufacturing process, have the ability to modify the microstructure of these materials. Establishing relationships between macroscopic model parameters and the characteristics of the microstructure is important, not only to improve our knowledge of the dissipation mechanisms, but also to optimize the materials through the manufacturing process. In this work, extensive measurements were performed on five glass wools for different manufacturing parameters. The macroscopic parameters were obtained by direct or indirect characterization methods and the microstructure described using SEM images. Measurement methods were then discussed and some of their limits identified for the specific case of fibrous materials. An abundant literature containing empirical or analytical relations exists to link microstructure and macroscopic parameters. Most of them were confronted with the measured data. Finally, analytical relations were selected to determine the porosity and the characteristics lengths from the density and the fiber diameters. Resistivity was provided with the same microstructure parameters according to an empirical relation. Regarding the tortuosity, tested formulas and measurements showed that this parameter was always close to unity for these materials and was therefore set to one

    Fibronectin binding proteins contribute to the adherence of Staphylococcus aureus to intact endothelium in vivo

    No full text
    Staphylococcal adhesins mediate attachment to matrix proteins and endothelial cells in vitro, yet, their role in primary adherence to the physiologic vessel wall has not been studied in vivo, and complex endocarditis models yielded ambiguous results. Recently, we developed a hamster model to study interaction kinetics of S. aureus with intact microvasculature using intravital fluorescence microscopy (Laschke et al. J Infect Dis 2005; 191: 435-443) providing the basis for this study. S. aureus Cowan 1 wild type (WT) log phase cells adhered to postcapillary venules to a significantly larger extent compared to stationary phase staphylococci, a finding in congruence with the fact that the staphylococcal adhesin repertoire largely depends on the growth phase. In comparison, the adherence rate of the fnbA deleted mutant (DU5895) to the vessel wall was significantly reduced to approximately 40% of WT. These DU5895 attachment rates were similar to those of an S. carnosus strain (TM300). In contrast, upon heterologous complementation of TM300 with either fnbA and fnbB, adherence of these transformants to the microvasculature increased, an increase found to be significant for fnbA transformant single cocci and clusters at 30 and 60 min when compared to S. carnosus TM300 WT. In conclusion, these results demonstrate that staphylococcal FnBPs significantly contribute to primary interaction with intact endothelium under physiologic conditions. Accordingly, this attribution of staphylococcal FnBPs provide a rationale for novel intervention strategies such as the use of anti-FnBP antibodies in endovascular S. aureus disease

    Phenotypic and Functional Analyses of KIR3DL1+and KIR3DS1+NK Cell Subsets Demonstrate Differential Regulation by Bw4 Molecules and Induced KIR3DS1 Expression on Stimulated NK Cells

    No full text
    International audienceRecently, the Z27 mAb was shown to recognize the NK cell-activating receptor KIR3DS1, and several genetic studies suggest that the most probable ligands of KIR3DS1 are HLA class I molecules with the Bw4 motif. Despite these findings, the attempts to establish a functional interaction between KIR3DS1 and its potential ligand have been unsuccessful. Here, we study the proliferation and cytotoxicity of KIR3DS1 ؉ NK cells, compared with KIR3DL1 ؉ NK cells, according to the Bw4 ؉ or Bw4 ؊ allogeneic environment. Our results show for the first time that KIR3DS1 expression on NK cells can be induced after exposure to stimulator cells (221, K562, EBV-B cell lines, and B cells), polyinosinic-polycytidylic acid, IL-15, or IL-2. Furthermore, whereas KIR3DL1 ؉ NK cell proliferation and cytotoxicity were inhibited in a Bw4 ؉ but not a Bw4 ؊ context, KIR3DS1 ؉ NK cell functions were not influenced by the presence of Bw4 on target cells. Nevertheless, despite the absence of demonstrated regulation of KIR3DS1 ؉ NK cell functions by HLA-Bw4 molecules, we found a higher KIR3DS1 ؉ NK cell frequency and higher levels of KIR3DS1 expression in Bw4 ؉ compared with Bw4 ؊ individuals. Altogether, these results suggest that KIR3DS1 does not recognize HLA-Bw4 molecules in a physiological context, and they highlight the induced expression of KIR3DS1 observed on stimulated NK cells and the higher frequency of KIR3DS1 ؉ NK cells in Bw4 ؉ individuals. Because a protective KIR3DS1-Bw4 association has been reported in viral infections, our results further the understanding of the role of KIR3DS1 ؉ NK cells in controlling viral infections

    Multiscale prediction of acoustic properties for glass wools: Computational study and experimental validation

    No full text
    International audienceThis work is concerned with the multiscale prediction of the transport and sound absorption propertiesassociated with industrial glass wool samples. In the first step, an experimental characterizationis performed on various products using optical granulometry and porosity measurements. A morphological analysis, based on scanning electron imaging, is further conducted to identify the probability density functions associated with the fiber angular orientation. The key morphological characterization parameters of the microstructure, which serve as input parameters of the model, include the porosity, the weighted volume diameter accounting for both lengths and diameters of the analyzed fibers (and therefore the specific surface area of the random fibrous material), and the preferred out-of-plane fiber orientation generated by the manufacturing process. A computational framework is subsequently proposed and allows for the reconstruction of an equivalent fibrous network. A fully stochastic microstructural model, parameterized by the probability laws inferred from the database, is also proposed herein. Multiscale simulations are carried out to estimate transport properties and sound absorption. With no adjustable parameter, the results accounting for ten different samples obtained with various processing parameters are finally compared with the experimental data and used to assess the relevance of the reconstruction procedures and the multiscale computations

    Discrimination between the main activating and inhibitory killer cell immunoglobulin-like receptor positive natural killer cell subsets using newly characterized monoclonal antibodies

    No full text
    Natural killer (NK) cells are key components of the innate anti-viral and anti-tumour immune responses. NK cell function is regulated by the interaction of killer cell immunoglobulin-like receptors (KIR) with human leucocyte antigen (HLA) class I molecules. In this study, we report on the generation of KIR-specific antibodies allowing for discrimination between activating and inhibitory KIR. For this purpose, BALB/c mice were immunized with human KIR2DS2 recombinant protein. The precise specificity of KIR2DS2-specific clones was determined on KIR-transfected BW cells and KIR-genotyped NK cells. When used in combination with EB6 (KIR2DL1/2DS1) or GL183 (KIR2DL2/2DL3/2DS2), two KIR-specific monoclonal antibodies (mAbs), 8C11 (specific for KIR2DL1/2DL2/2DL3/2DS2) and 1F12 (specific for KIR2DL3/2DS2), discriminated activating KIR2DS1 (8C11− EB6+) from inhibitory KIR2DL1 (8C11+ GL183−) and KIR2DL2 (1F12− GL183+), while excluding the main HLA-Cw-specific KIR. Using these mAbs, KIR2DS1 was shown to be expressed on the surface of NK cells from all individuals genotyped as KIR2DS1+ (n = 23). Moreover, KIR2DS1 and KIR2DL1 were independently expressed on NK cells. We also determined the amino acid position recognized by the 8C11 and 1F12 mAbs, which revealed that some KIR2DL1 allele-encoded proteins are not recognized by 8C11. Because most available anti-KIR mAbs recognize both inhibitory and activating forms of KIR, these newly characterized antibodies should help assess the expression of activating and inhibitory KIR and their functional relevance to NK biology
    corecore