40 research outputs found
Timing by Stellar Pulsations as an Exoplanet Discovery Method
The stable oscillations of pulsating stars can serve as accurate timepieces,
which may be monitored for the influence of exoplanets. An external companion
gravitationally tugs the host star, causing periodic changes in pulsation
arrival times. This method is most sensitive to detecting substellar companions
around the hottest pulsating stars, especially compact remnants like white
dwarfs and hot subdwarfs, as well as delta Scuti variables (A stars). However,
it is applicable to any pulsating star with sufficiently stable oscillations.
Care must be taken to ensure that the changes in pulsation arrival times are
not caused by intrinsic stellar variability; an external, light-travel-time
effect from an exoplanet identically affects all pulsation modes. With more
long-baseline photometric campaigns coming online, this method is yielding new
detections of substellar companions.Comment: 9 pages, 2 figures: Invited review to appear in 'Handbook of
Exoplanets,' Springer Reference Works, edited by Hans J. Deeg and Juan
Antonio Belmont
Normal modes and discovery of high-order cross-frequencies in the DBV white dwarf GD 358
We present a detailed mode identification performed on the 1994 Whole Earth Telescope (WET) run on GD 358. The results are compared with that obtained for the same star from the 1990 WET data. The two temporal spectra show very few qualitative differences, although amplitude changes are seen in most modes, including the disappearance of the mode identified as k=14 in the 1990 data. The excellent coverage and signal-to-noise ratio obtained during the 1994 run lead to the secure identification of combination frequencies up to fourth order, i.e. peaks that are sums or differences of up to four parent frequencies, including a virtually complete set of second-order frequencies, as expected from harmonic distortion. We show how the third-order frequencies are expected to affect the triplet structure of the normal modes by back-interacting with them. Finally, a search for ℓ=2 modes was unsuccessful, not verifying the suspicion that such modes had been uncovered in the 1990 data set
Bayesian inference on stochastic gene transcription from flow cytometry data
Motivation
Transcription in single cells is an inherently stochastic process as mRNA levels vary greatly between cells, even for genetically identical cells under the same experimental and environmental conditions. We present a stochastic two-state switch model for the population of mRNA molecules in single cells where genes stochastically alternate between a more active ON state and a less active OFF state. We derive the stationary solution of such a model and prove that it can be written as a mixture of a Poisson and a Poisson-beta probability distribution. This finding facilitates inference for single cell data, observed at a single time point, from flow cytometry experiments such as FACS or FISH as it allows one to sample directly from the equilibrium distribution of the mRNA population. We hence propose a Bayesian inferential methodology using a pseudo-marginal approach and a recent approximation to integrate over unobserved states associated with measurement error.
Results
We provide a general inferential framework which can be widely used to study transcription in single cells from the kind of data arising in flow cytometry experiments. The approach allows us to separate between the intrinsic stochasticity of the molecular dynamics and the measurement noise. The methodology is tested in simulation studies and results are obtained for experimental multiple single cell data from in situ hybridization (FISH) flow cytometry experiment
Evolutionary and pulsational properties of white dwarf stars
Abridged. White dwarf stars are the final evolutionary stage of the vast
majority of stars, including our Sun. The study of white dwarfs has potential
applications to different fields of astrophysics. In particular, they can be
used as independent reliable cosmic clocks, and can also provide valuable
information about the fundamental parameters of a wide variety of stellar
populations, like our Galaxy and open and globular clusters. In addition, the
high densities and temperatures characterizing white dwarfs allow to use these
stars as cosmic laboratories for studying physical processes under extreme
conditions that cannot be achieved in terrestrial laboratories. They can be
used to constrain fundamental properties of elementary particles such as axions
and neutrinos, and to study problems related to the variation of fundamental
constants.
In this work, we review the essentials of the physics of white dwarf stars.
Special emphasis is placed on the physical processes that lead to the formation
of white dwarfs as well as on the different energy sources and processes
responsible for chemical abundance changes that occur along their evolution.
Moreover, in the course of their lives, white dwarfs cross different
pulsational instability strips. The existence of these instability strips
provides astronomers with an unique opportunity to peer into their internal
structure that would otherwise remain hidden from observers. We will show that
this allows to measure with unprecedented precision the stellar masses and to
infer their envelope thicknesses, to probe the core chemical stratification,
and to detect rotation rates and magnetic fields. Consequently, in this work,
we also review the pulsational properties of white dwarfs and the most recent
applications of white dwarf asteroseismology.Comment: 85 pages, 28 figures. To be published in The Astronomy and
Astrophysics Revie
Asteroseismology
Asteroseismology is the determination of the interior structures of stars by
using their oscillations as seismic waves. Simple explanations of the
astrophysical background and some basic theoretical considerations needed in
this rapidly evolving field are followed by introductions to the most important
concepts and methods on the basis of example. Previous and potential
applications of asteroseismology are reviewed and future trends are attempted
to be foreseen.Comment: 38 pages, 13 figures, to appear in: "Planets, Stars and Stellar
Systems", eds. T. D. Oswalt et al., Springer Verla
Pulsating White Dwarf Stars and Precision Asteroseismology
Galactic history is written in the white dwarf stars. Their surface
properties hint at interiors composed of matter under extreme conditions. In
the forty years since their discovery, pulsating white dwarf stars have moved
from side-show curiosities to center stage as important tools for unraveling
the deep mysteries of the Universe. Innovative observational techniques and
theoretical modeling tools have breathed life into precision asteroseismology.
We are just learning to use this powerful tool, confronting theoretical models
with observed frequencies and their time rate-of-change. With this tool, we
calibrate white dwarf cosmochronology; we explore equations of state; we
measure stellar masses, rotation rates, and nuclear reaction rates; we explore
the physics of interior crystallization; we study the structure of the
progenitors of Type Ia supernovae, and we test models of dark matter. The white
dwarf pulsations are at once the heartbeat of galactic history and a window
into unexplored and exotic physics.Comment: 70 pages, 11 figures, to be published in Annual Review of Astronomy
and Astrophysics 200
Asteroseismology and Interferometry
Asteroseismology provides us with a unique opportunity to improve our
understanding of stellar structure and evolution. Recent developments,
including the first systematic studies of solar-like pulsators, have boosted
the impact of this field of research within Astrophysics and have led to a
significant increase in the size of the research community. In the present
paper we start by reviewing the basic observational and theoretical properties
of classical and solar-like pulsators and present results from some of the most
recent and outstanding studies of these stars. We centre our review on those
classes of pulsators for which interferometric studies are expected to provide
a significant input. We discuss current limitations to asteroseismic studies,
including difficulties in mode identification and in the accurate determination
of global parameters of pulsating stars, and, after a brief review of those
aspects of interferometry that are most relevant in this context, anticipate
how interferometric observations may contribute to overcome these limitations.
Moreover, we present results of recent pilot studies of pulsating stars
involving both asteroseismic and interferometric constraints and look into the
future, summarizing ongoing efforts concerning the development of future
instruments and satellite missions which are expected to have an impact in this
field of research.Comment: Version as published in The Astronomy and Astrophysics Review, Volume
14, Issue 3-4, pp. 217-36
Spectropolarimetry of stars across the H-R diagram
The growing sample of magnetic stars shows a remarkable diversity in the
properties of their magnetic fields. The overall goal of current studies is to
understand the origin, evolution, and structure of stellar magnetic fields in
stars of different mass at different evolutionary stages. In this chapter we
discuss recent measurements together with the underlying assumptions in the
interpretation of data and the requirements, both observational and
theoretical, for obtaining a realistic overview of the role of magnetic fields
in various types of stars.Comment: 23 pages, 3 figures, chapter 7 of "Astronomical Polarisation from the
Infrared to Gamma Rays", published in Astrophysics and Space Science Library
46