3,186 research outputs found

    Probing new physics in diphoton production with proton tagging at the Large Hadron Collider

    Get PDF
    The sensitivities to anomalous quartic photon couplings at the Large Hadron Collider are estimated using diphoton production via photon fusion. The tagging of the protons proves to be a very powerful tool to suppress the background and unprecedented sensitivities down to 610156 \cdot 10^{-15}\gev4^{-4} are obtained, providing a new window on extra dimensions and strongly-interacting composite states in the multi-TeV range. Generic contributions to quartic photon couplings from charged and neutral particles with arbitrary spin are also presented.Comment: 4 pages, 3 figure

    Ordinary selfdistributive rings

    Get PDF
    summary:Left selfdistributive rings (i.e., xyz=xyxzxyz = xyxz) which are semidirect sums of boolean rings and rings nilpotent of index at most 3 are studied

    Assessment of the fatigue life of a city bus

    Get PDF
    FW01010386 “Research and development of articulated electric bus

    Next-to-leading BFKL phenomenology of forward-jet cross sections at HERA

    Full text link
    We show that the forward-jet measurements performed at HERA allow for a detailed study of corrections due to next-to-leading logarithms (NLL) in the Balitsky-Fadin-Kuraev-Lipatov (BFKL) approach. While the description of the d\sigma/dx data shows small sensitivity to NLL-BFKL corrections, these can be tested by the triple differential cross section d\sigma/dxdk_T^2dQ^2 recently measured. These data can be successfully described using a renormalization-group improved NLL kernel while the standard next-to-leading-order QCD or leading-logarithm BFKL approaches fail to describe the same data in the whole kinematic range. We present a detailed analysis of the NLL scheme and renormalization-scale dependences and also discuss the photon impact factors.Comment: 15 pages, 9 figures, new title, NLL-BFKL saddle-point approximation replaced by exact integratio

    Search for electromagnetic properties of the neutrinos at the LHC

    Full text link
    Exclusive production of neutrinos via photon-photon fusion provides an excellent opportunity to probe electromagnetic properties of the neutrinos at the LHC. We explore the potential of processes pp-> p gamma gamma p -> p nu anti-nu p and pp -> p gamma gamma p -> p nu anti-nu Z p to probe neutrino-photon and neutrino-two photon couplings. We show that these reactions provide more than seven orders of magnitude improvement in neutrino-two photon couplings compared to LEP limits.Comment: 11 pages, 4 tables, New backgrounds have been adde

    FATIMA Czech pilot

    Get PDF
    In FATIMA project, a pilot site in Czechia was established to demonstrate how precision agriculture may serve for optimizing crop yields as well as for protection of water quality, since the pilot is located in Czech largest drinking water reservoir catchment. The pilot site Dehtáře is situated in the south-west Bohemo-Moravian Highland. The site contains tile drainage and is of very heterogeneous soil conditions; from shallow, light and stony Haplic Cambisols to heavy Haplic Gleysols, with profoundly different water regimes. For the field trial (spring barley in 2016), crop yield potential was determined from crop statuses as captured by satellite images) eight years back, assessed by Enhanced Vegetation Index. Based on this, as well as on a detailed soil survey and repeated soil sampling, variable fertilizer application zones (70 – 120%) were delineated and mineral fertilizers distributed accordingly with GPS operated spreader three times from late April to late May. The rest of the site was fertilized uniformly. Soil water regime (soil moisture, soil water potential) was monitored continuously on eight spots and real-time broadcasted by wireless sensor network to WEB GIS interface via SensLog solution, adopted from FOODIE project. In the same spots, soil water was sampled by gravitational soil lysimeters. Precise harvest showed a general agreement with the delineated application zones and yield potential, however, some ambiguities were revealed, most probably due to changeable soil water regime, as documented by the sensors, as well as due to variable soil chemical properties (low soil pH). Nevertheless, precisely applied fertilizer doses in the application zones brought about 10% higher crop yields with simultaneous better N crop efficiency. Soil water quality samples confirmed that heterogeneous doses of fertilizer in correctly delineated zones is a promising approach for improvement of groundwater quality especially in shallow soils with low water and nutrient retention abilit
    corecore