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Abstract 

In FATIMA project, a pilot site in Czechia was established to demonstrate how precision agriculture 
may serve for optimizing crop yields as well as for protection of water quality, since the pilot is located 
in Czech largest drinking water reservoir catchment. The pilot site Dehtáře is situated in the south-
west Bohemo-Moravian Highland. The site contains tile drainage and is of very heterogeneous soil 
conditions; from shallow, light and stony Haplic Cambisols to heavy Haplic Gleysols, with profoundly 
different water regimes. For the field trial (spring barley in 2016), crop yield potential was determined 
from crop statuses as captured by satellite images) eight years back, assessed by Enhanced 
Vegetation Index. Based on this, as well as on a detailed soil survey and repeated soil sampling, 
variable fertilizer application zones (70 – 120%) were delineated and mineral fertilizers distributed 
accordingly with GPS operated spreader three times from late April to late May. The rest of the site 
was fertilized uniformly. Soil water regime (soil moisture, soil water potential) was monitored 
continuously on eight spots and real-time broadcasted by wireless sensor network to WEB GIS 
interface via SensLog solution, adopted from FOODIE project. In the same spots, soil water was 
sampled by gravitational soil lysimeters. Precise harvest showed a general agreement with the 
delineated application zones and yield potential, however, some ambiguities were revealed, most 
probably due to changeable soil water regime, as documented by the sensors, as well as due to 
variable soil chemical properties (low soil pH). Nevertheless, precisely applied fertilizer doses in the 
application zones brought about 10% higher crop yields with simultaneous better N crop efficiency. 
Soil water quality samples confirmed that heterogeneous doses of fertilizer in correctly delineated 
zones is a promising approach for improvement of groundwater quality especially in shallow soils with 
low water and nutrient retention ability. 
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Background 

Crop yield is the main integrator of landscape and climatic variability and therefore provide useful 
information for identifying field management zones (Kleinjan et al., 2007). Management zones are in 
the context of precision agriculture areas possessing homogenous attributes in landscape and soil 
condition. These areas should lead to the same results in crop yield potential, input use efficiency and 
environmental impact (Schepers et al., 2004). This presents a basic delineation of management 
zones for site specific crop management, which is usually based on yield maps over the past few 
years. Similar to the evaluation of yield variation from multiple yield data described by Blackmore et al. 
(2003), the aim is to identify high yielding (above the mean) and low yielding areas related as the 
percentage to the mean value of the field. Also the inter-year spatial variance of yield data is 
important for agronomists to distinguish between areas with stable or unstable yields. The presence 
of complete series of yield maps for all fields is rare, thus remote sensed data are analyzed to 
determine in field variability of crops thru vegetation indices, which is well known relationship Bauer 
(1975). The aim of this paper is to introduce results how crop harvest reflected variable fertilizer 
management in different application zones and crop yield areas and how it may affect soil water 
quality in different management zones. 
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Materials and Methods 

The pilot site Dehtáře (25 ha) is situated in the south-west Bohemo-Moravian Highland, in 3° slope 
and average altitude of 535 m a.s.l. The site is located in drinking water reservoir catchment Zelivka. 
The site contains tile drainage and is of very heterogeneous soil conditions; from shallow, light and 
stony Haplic Cambisols to heavy Haplic Gleysols, with profoundly different water regimes. Haplic 
Cambisols prevailing in upper parts of the field are light, shallow and stony sandy loams and loamy 
sands. Stagnic Cambisols medium-deep sandy loams dominate in the lower parts of the slopes.  

 

Figure 1. Location of Dehtáře pilot site, Czechia 

 

Soil samples were taken from 22 sites as a mixture of 3-4 individual subsamples were collected 
repeatedly (autumn 2015, spring 2016) from two upper horizons (A, B) to determine pH (0.2-mol KCl 
solution), the organic C content (by chromic acid oxidation followed by iodometric titration), the total N 
content (the Kjeldahl method), the mineral N content (N-NH4+N-NO3 extracted by 1 % KCl) and 
available P, K, Ca and Mg concentration (Mehlich III), cation exchange capacity and the total P 
content (extracted by aqua regia). 

Further, crop yield potential was assessed based on the multi-temporal satellite data. As the main 
data source, ESPA repository of LANDSAT 5 and 8 satellite images was used, which offers surface 
reflectance products, main vegetation indices (NDVI, EVI – reflecting crop biomass) and clouds 
identification by CFmask algorithm. A selection of scenes from recent 8 years was made for the 
specific farm area to collect cloud-free data related to the second half of the vegetation period. Yield 
potential was calculated for separate scenes as the relation of each pixel to mean EVI value of the 
whole field. In the next step, all scenes were combined and median value for each pixel was 
calculated as the yield potential value. Due to the spatial resolution of Landsat data (30 m per pixel), 
the final map was smoothed by kriging interpolation into a spatial resolution of 5 m per pixel (Fig. 2). 
After the full operation of Sentinel 2A/B satellites and with the presence of imagery for an increased 
number of years, calculation of yield potential will be enhanced by these vegetation products in 10-m 
spatial resolution planned for 2017 FATIMA trial).  
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Figure 2. Yield potential for Dehtáře pilot site 
(Kojcice farm), Czech Rep. 

 

Based on this as well as on a detailed soil survey and repeated soil sampling (mineral N content), 
variable fertilizer application zones (70 – 120%) were delineated (VAR trial, around 35% of the site) 
and mineral fertilizers distributed accordingly with GPS operated spreader three times from early April 
to late May. The rest of the site (65%) was fertilized uniformly (UNI trial), (Fig. 3). 

Ground measurements of Chlorophyll and NDVI in Dehtare  
Ground monitoring of spectral dynamics of cereals provide useful supplementary information on crop 
biomass amount as well as chlorophyll content. This data could be employed for adjustment of N 
fertilizer doses taking into account the current plant nutritive status. Ground monitoring of spectral 
characteristics for spring barley was done in Dehtáře during 2016 by two offline hand devices; Yara N-
tester and GreenSeeker.  N-tester scans crop chlorophyll content (in correlation with N content in 
leaves) based on different reflectance of red (653 nm) and infrared (931 nm) radiation. Chlorophyll 
content is recalculated by N-tester for a given crop variety (cultivar) and displayed as N need in kg 
N/ha. The N-tester is usually employed for setting N doses for cereals in production fertilization 
(BBCH 30-31, start of stem elongation) and qualitative (late) fertilization (BBCH 39-49, end of stem 
elongation to start of heading), as for central European conditions. GreenSeeker monitors and 
records NDVI as canopy-reflected radiation in RED and near-infrared spectrum (NIR). NDVI is in a 
close correlation with crop biomass and chlorophyll. Fertilizer N dose is given by a reference value 
(from the densest crop cover) and expected yield.  
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Figure 3. Variable fertilizer application zones 
for Dehtáře pilot site  

 

Monitoring of crop spectral characteristics by the aforementioned hand devices took place in Dehtáře 
between 24.5.-7.7.2016, in a fortnight interval, on 22 sites within the pilot field trial polygon (Fig. 4). 
The N-tester was used only till 21.6. (BBCH 55-59, Heading), the GreenSeeker was applied till 
7.7.2016. Results of N-tester from 24.5.2016 were incorporated in adjustment of late N fertilization 
and applied on the same day. Recommended values for N doses from N-tester were averaged and 
this value (28 kg N/ha) was applied in the reference application zones (100% yield potential). In the 
other application zones, the applied N dose was set according the appropriate zone (e.g. 80% = 0.8 x 
28 kg N/ha, etc.). 
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Figure 4. Chlorophyll content captured by 
Yara  
N-tester, 24.5.2016, Dehtáře pilot site  

 

Results and discussion 

Precise harvest (dated 15.8.2016) showed a general agreement with the delineated application zones 
and yield potential. However, some ambiguities were revealed, most probably due to changeable soil 
water regime as well as due to variable soil chemical properties (low soil pH) (Fig. 5). Nevertheless, 
precisely applied fertilizer doses in the application zones of the trial polygon brought about higher crop 
yields compared to homogeneous doses with simultaneous better N crop efficiency (kg grain / kg N – 
56 for UNI, 60 for VAR). 

 

Figure 5. Precise harvest on Dehtáře pilot site 
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Heterogeneous fertilizer application increased spring barley yields by 8 % compared to homogeneous 
application (6.7 t grain/ha vs. 6.5 t/ha, respectively) in parallel with lower fertilization consumption per 
hectare (113 vs. 118 kg N/ha, respectively). This resulted in higher nitrogen efficiency of crop 
production (59 kg grain/kg N applied vs. 55 kg grain/kg N applied under homogeneous fertilizer 
application). The total soil nitrogen balance was negative due to taking up soil mineralized nitrogen 
coming from cow manure applied in autumn 2014.  

The crop yield in 80 % application zone of the whole field, which was located especially in the lower 
part of the field, was higher than in the part applied with the homogeneous nitrogen dose (100 % 
application zone). This could be explained by nitrogen utilization which had been leached away from 
upper field parts.   

A comparison of ground monitoring data (N-tester, Greenseeker) with Sentinel-2 images was done 
from the days when ground measurements took place and with the yield from precise harvest. So far, 
using cloudless images and without atmospheric corrections, we got the only one date with a 
satisfactory correlation of yield with GreenSeeker data from 21.6.2016 (r = 0.594), (Fig. 6). A better 
output is expected as the indexes from red-edge images are ready. 

 

Figure 6. NDVI as captured by GreenSeeker, 
21.6.2016, Dehtare. 

 

Conclusion 

The second year of a detailed, site specific application of fertilizers showed a general agreement with 
the delineated application zones and yield potential. Soil water quality samples confirmed that 
heterogeneous doses of fertilizer in correctly delineated zones is a promising approach for 
improvement of groundwater quality especially in shallow soils with low water and nutrient retention 
ability. Further research is needed to broaden the knowledge which combines and harmonizes 
different farming and environmental goals and expectations in an agricultural landscape. 

 

  

https://zenodo.org/communities/pa17


 

  7th Asian-Australasian Conference on Precision Agriculture 

 

zenodo.org/communities/pa17   7 

Acknowledgments 

This paper was prepared under a project FATIMA (FArming Tools for external nutrient Inputs and 
water Management, H2020, ID 633945). 

 

References 

Bauer ME 1975. The role of remote sensing in determining the distribution and yield of crops. In: 
Brady NC ed. Advances in Agronomy. 271–304 pp. 

Blackmore S, Godwin RJ, Fountas S 2003. The analysis of spatial and temporal trends in yield map 
data over six years. Biosystems Engineering 84: 455–466. 

Kleinjan J, Clay DE, Carlson CG, Clay SA 2007. Productivity zones from multiple years of yield 
monitor data. In: Pierce FJ, Clay D eds. GIS applications in agriculture. 65–80 pp. 

Schepers AR, Shanahan JF, Liebig MA, Schepers JS, Johnson SH, Luchiari Jr A 2004. 
Appropriateness of management zones for characterizing spatial variability of soil properties and 
irrigated corn yields across years. Agronomy Journal 96: 195–203. 

Clevers JGPW, Gitelson AA 2013. Remote estimation of crop and grass chlorophyll and nitrogen 
content using red-edge bands on Sentinel-2 and -3. International Journal of Applied Earth 
Observation and Geoinformation 23: 344–351. 

Dash J, Curran PJ 2004. The MERIS terrestrial chlorophyll index. International Journal of Remote 
Sensing 25: 5403–5413. 

Fitzgerald GJ, Rodriguez D, O’Leary G 2010. Measuring and predicting canopy nitrogen nutrition in 
wheat using a spectral index – the canopy chlorophyll content index (CCCI). Field Crop Research 
116: 318–324. 

Gitelson AA, Viña A, Rundquist DC, Ciganda V, Arkebauer TJ 2005. Remote estimation of canopy 
chlorophyll content in crops. Geophysical Research Letters. P. 32. DOI: 10.1029/2005Gl022688. 

Hatfield JL, Gitelson AA, Schepers JS, Walthall CL 2008. Application of spectral remote sensing for 
agronomic decisions. Agronomy Journal 100: S117–S131. 

He L, Song X, Feng W, Guo BB, Zhang YS, Wang YH, Wang CY, Guo TC 2016. Improved remote 
sensing of leaf nitrogen concentration in winter wheat using multi-angular hyperspectral data. Remote 
Sensing of Environment 174: 122-133. 

Holland KH, Schepers JS 2010. Derivation of a variable rate nitrogen application model for in-season 
fertilization of corn. Agronomy Journal 102: 1415–1424. 

Holland KH, Schepers JS 2011. Active-crop sensor calibration using the virtual reference concept.  
In: Stafford JV ed. Precision Agriculture 2011. Czech Centre for Science and Society, Prague, Czech 
Republic. 469–479 pp. 

Justes E, Mary B, Meynard JM, Machet JM, Thelier-Huche L 1994. Determination of a critical nitrogen 
dilution curve for winter wheat crops. Annals of Botany 74: 397–407. 

Lemaire G, Plénet D, Grindlay D 1997. Leaf N content as an indicator of crop N nutrition status.  
In:  Lemaire G ed. Diagnosis of the Nitrogen Status in Crops. Pp. 189-199. 

Lemaire et al. 2008. Diagnosis tool for plant and crop N status in vegetative stage. European Journal 
of Agronomy 28: 614–624. 

Li F, Miao Y, Feng G, Yuan F, Yue S, Gao X, Liu Y, Liu B, Ustin SL, Chen X 2014. Improving 
estimation of summer maize nitrogen status with red edge-based spectral vegetation indices. Field 
Crops Research 157: 111–123. 

Shaver TM, Khosla R, Westfall DG 2010. Evaluation of two ground-based active crop canopy sensors 
in maize: growth stage, row spacing, and sensor movement speed. Soil Science Society of America 
Journal 74: 2101–2108. 

 Zhao et al. 2014. New critical nitrogen curve based on leaf area index for winter wheat. Agronomy 
Journal 106(2): 379–389. 

https://zenodo.org/communities/pa17

