546 research outputs found

    Molecular phylogeny of sea snakes reveals a rapidly diverged adaptive radiation

    Get PDF
    Evolutionary relationships within and between the marine hydrophiine sea snake groups have been inferred primarily using morphological characters, and two major groups traditionally are recognized. The Aipysurus group comprises nine species in two genera, and the taxonomically chaotic Hydrophis group comprises as many as 40 species, of which 27 are generally allocated to the genus Hydrophis and 13 to ten additional genera. In addition to these two major groups are three putatively 'primitive' monotypic genera, Hydrelaps darwiniensis, Ephalophis greyi and Parahydrophis mertoni. The present study investigated the evolutionary relationships of 23 representative species of marine hydrophiines, comprising 15 species from the Hydrophis group, six species from the Aipysurus group, and H. darwiniensis and P. mertoni, to address two broad aims. First, the aim was to provide a robust phylogeny for sea snakes to test previous phylogenetic hypotheses based on morphology, and thus provide some taxonomic stability to the group. Second, there was interest in evaluating the hypothesis that the Hydrophis group might represent a rapidly diverged adaptive radiation. A large mitochondrial DNA data set based on the cytochrome b gene (1080 bp, 401 parsimony informative) and the 16S rRNA gene (510 bp, 57 parsimony informative) was assembled and these data were analysed using parsimony, maximum-likelihood and Bayesian approaches. All analyses yielded virtually the same optimal tree, confirming that hydrophiine sea snakes comprise at least three lineages. The Aipysurus group formed a strongly supported and well-resolved monophyletic clade. The Hydrophis group also formed a strongly supported clade; however, resolution among the genera and species was very poor. Hydrelaps darwiniensis and P. mertoni formed a sister clade to the Hydrophis lineage. Our phylogeny was used to test the validity of previous taxonomic and phylogenetic hypotheses, and to demonstrate that the genus Hydrophis is not monophyletic. Genetic diversity relative to phenotypic diversity is four to seven times greater in the Hydrophis lineage compared with the Aipysurus lineage. The topology of our phylogenetic hypothesis, combined with the levels of genetic divergence relative to morphological diversity, demonstrate that the Hydrophis lineage represents a rapidly diverged adaptive radiation. The data are consistent with the hypothesis that this adaptive radiation may be due to historical sea level fluctuations that have isolated populations and promoted speciation

    Ecomorphological diversity of Australian tadpoles

    Get PDF
    Ecomorphology is the association between an organism's morphology and its ecology. Larval anuran amphibians (tadpoles) are classified into distinct ecomorphological guilds based upon morphological features and observations of their ecology. The extent to which guilds comprise distinct morphologies resulting from convergent evolution, the degree of morphological variability within each guild, and the degree of continuity in shape between guilds has not previously been examined in a phylogenetically informed statistical framework. Here, we examine tadpole ecomorphological guilds at a macroevolutionary scale by examining morphological diversity across the Australian continent. We use ecological data to classify species to guilds, and geometric morphometrics to quantify body shape in the tadpoles of 188 species, 77% of Australian frog diversity. We find that the ecomorphological guilds represented by Australian species are morphologically distinct, but there is substantial morphological variation associated with each guild, and all guilds together form a morphological continuum. However, in a phylogenetic comparative context, there is no significant difference in body shape among guilds. We also relate the morphological diversity of the Australian assemblage of tadpoles to a global sample and demonstrate that ecomorphological diversity of Australian tadpoles is limited with respect to worldwide species. Our results demonstrate that general patterns of ecomorphological variation are upheld in Australian tadpoles, but tadpole body shape is more variable and possibly generalist than generally appreciated.Funding came from the Australian Research Council DP150102403 to JSK. ES was supported by The University of Adelaide Research Fellowshi

    The Effects of Residency and Body Size on Contest Initiation and Outcome in the Territorial Dragon, Ctenophorus decresii

    No full text
    Empirical studies of the determinants of contests have been attempting to unravel the complexity of animal contest behaviour for decades. This complexity requires that experiments incorporate multiple determinants into studies to tease apart their relative effects. In this study we examined the complex contest behaviour of the tawny dragon (Ctenophorus decresii), a territorial agamid lizard, with the specific aim of defining the factors that determine contest outcome. We manipulated the relative size and residency status of lizards in contests to weight their importance in determining contest outcome. We found that size, residency and initiating a fight were all important in determining outcomes of fights. We also tested whether residency or size was important in predicting the status of lizard that initiated a fight. We found that residency was the most important factor in predicting fight initiation. We discuss the effects of size and residency status in context of previous studies on contests in tawny dragons and other animals. Our study provides manipulative behavioural data in support of the overriding effects of residency on initiation fights and winning them.This study was funded by the Australian Research Council (www.arc.gov.au), the School of Botany and Zoology, and ANU (www.anu.edu.au). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Landforms predict phylogenetic structure on one of the world's most ancient surfaces

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The iconic Pilbara in northwestern Australia is an ancient geological and biophysical region that is an important zone of biodiversity, endemism and refugia. It also is overlain by some of the oldest erosion surfaces on Earth, but very little is known about the patterns of biotic diversity within the Pilbara or how they relate to the landscape. We combined phylogenetic and spatial-autocorrelation genetic analyses of mitochondrial DNA data on populations of the gekkotan lizard <it>Lucasium stenodactylum </it>within the Pilbara with geological, distributional and habitat data to test the hypothesis that ancient surface geology predicts current clade-habitat associations in saxicoline animals.</p> <p>Results</p> <p>This is the first detailed phylogenetic examination of a vertebrate organism across the Pilbara region. Our phylogeny provides strong support for a deep and ancient phylogenetic split within <it>L. stenodactylum </it>that distinguishes populations within the Pilbara region from those outside the Pilbara. Within the Pilbara region itself, our phylogeny has identified five major clades whose distribution closely matches different surface geologies of this ancient landscape. Each clade shows strong affinities with particular terrain types and topographic regions, which are directly related to different geological bedrock.</p> <p>Conclusion</p> <p>Together our phylogenetic, distributional, geological and habitat data provide a clear example of ecological diversification across an ancient and heterogeneous landscape. Our favoured hypothesis is that ancestors of the Pilbara lineages radiated into the region at the onset of aridity in Australia approximately 5 mya and locally adapted to the various ancient and highly stable terrain types and the micro-habitats derived from them. In terms of specimen recovery and analysis, we are only beginning to reconstruct the biotic history of this ancient landscape. Our results show the geological history and the habitats derived from them will form an important part of this emerging story.</p

    Behavioral and morphological traits interact to promote the evolution of alternative reproductive tactics in a lizard

    Get PDF
    Alternative reproductive tactics (ARTs) are predicted to be the result of disruptive correlational selection on suites of morphological, physiological, and behavioral traits. ARTs are most obvious when they occur in discrete morphs with concomitant behav

    A new species of australian frog (Myobatrachidae:Uperoleia) from the New South Wales mid-north coast sandplains

    Get PDF
    The discovery of new vertebrate species in developed countries is still occurring at surprising rates for some taxonomic groups, especially the amphibians and reptiles. While this most often occurs in under-explored areas, it occasionally still happens in well-inhabited regions. We report such a case with the discovery and description of <i>U. mahonyi</i> <b>sp. nov.</b>, a new species of frog from a highly populated region of New South Wales, Australia. We provide details of its morphology, calls, embryos and tadpoles, and phylogenetic relationships to other species of eastern <i>Uperoleia</i>. We also provide the results of targeted surveys to establish its distribution and provide observations of its habitat associations. As a consequence of these surveys, we comment on the likely restricted nature of the species' distribution and habitat, and place this in the context of a preliminary assessment of its putative conservation status, which should be assessed for listing under the IUCN's red list. We note this species, which is morphologically distinct, has gone unnoticed for many decades despite numerous eco-logical surveys for local development applications

    Spatial ecology of the critically endangered Fijian crested iguana, Brachylophus vitiensis, in an extremely dense population: implications for conservation

    No full text
    The Critically Endangered Fijian crested iguana, Brachylophus vitiensis, occurs at extreme density at only one location, with estimates of >10,000 iguanas living on the 70 hectare island of Yadua Taba in Fiji. We conducted a mark and recapture study over two wet seasons, investigating the spatial ecology and intraspecific interactions of the strictly arboreal Fijian crested iguana. This species exhibits moderate male-biased sexual size dimorphism, which has been linked in other lizard species to territoriality, aggression and larger male home ranges. We found that male Fijian crested iguanas exhibit high injury levels, indicative of frequent aggressive interactions. We did not find support for larger home range size in adult males relative to adult females, however male and female residents were larger than roaming individuals. Males with established home ranges also had larger femoral pores relative to body size than roaming males. Home range areas were small in comparison to those of other iguana species, and we speculate that the extreme population density impacts considerably on the spatial ecology of this population. There was extensive home range overlap within and between sexes. Intersexual overlap was greater than intrasexual overlap for both sexes, and continuing male-female pairings were observed among residents. Our results suggest that the extreme population density necessitates extensive home range overlap even though the underlying predictors of territoriality, such as male biased sexual size dimorphism and high aggression levels, remain. Our findings should be factored in to conservation management efforts for this species, particularly in captive breeding and translocation programs.This work was supported by the International Iguana Foundation, the Australian National University (field work grant), the Federation of Australian Women (Georgina Sweet fellowship), the Ecological Society of Australia (student research award) and the Taronga Foundation

    Activity Predicts Male Reproductive Success in a Polygynous Lizard

    No full text
    Activity patterns and social interactions play a key role in determining reproductive success, although this is poorly understood for species that lack overt social behaviour. We used genetic paternity analysis to quantify both multiple paternity and the relative roles of activity and social behaviour in determining reproductive success in a nondescript Australian lizard. During the breeding season we intensively followed and recorded the behaviour of a group of seven males and 13 females in a naturalistic outdoor enclosure to examine the relative roles of body size, activity and social interactions in determining male fertilization success. We found multiple paternity in 42% of clutches. No single behaviour was a significant predictor of male fertilization success in isolation, but male-female association, interactions and courtship explained 41% of the variation in male fertilization success. Males with the highest number of offspring sired invested heavily in interacting with females but spent very little time in interactions with males. These same males also sired offspring from more clutches. When taken collectively, an index of overall male activity, including locomotion and all social interactions, significantly explained 81% of the variation in the total number of offspring sired and 90% of the variation in the number of clutches in which males sired offspring. We suggest that the most successful male strategy is a form of endurance rivalry in which active mate searching and interactions with females have the greatest fitness benefits.This work was supported by grants from the Australian Research Council to JSK

    Invasive cane toads are unique in shape but overlap in ecological niche compared to Australian native frogs

    Get PDF
    Invasive species are an important issue worldwide but predicting invasiveness, and the underlying mechanisms that cause it, is difficult. There are several primary hypotheses to explain invasion success. Two main hypothesis based on niche spaces stand out as alternative, although not exclusive. The empty niche hypothesis states that invaders occupy a vacant niche space in the recipient community, and the niche competition hypothesis states that invaders overlap with native species in niche space. Studies on trait similarity/dissimilarity between the invader and native species can provide information on their niche overlap. Here, we use the highly invasive and well-studied cane toad (Rhinella marina) to test these two hypotheses in Australia, and assess its degree of overlap with native species in several niche dimensions. We compare extensive morphological and environmental data of this successful invader to 235 species (97%) of native Australian frogs. Our study is the first to document the significant morphological differences between the invasive cane toad and a continent-wide frog radiation: despite significant environmental overlap, cane toads were distinct in body size and shape from most Australian frog species, suggesting that in addition to their previously documented phenotypic plasticity and wide environmental and trophic niche breadth, their unique shape also may have contributed to their success as an invasive species in Australia. Thus, the invasive success of cane toads in Australia may be explained through them successfully colonizing an empty niche among Australian anurans. Our results support that the cane toad's distinct morphology may have played a unique role in the invasiveness of this species in Australia, which coupled with a broad environmental niche breadth, would have boosted their ability to expand their distribution across Australia. We also propose RLLR (Relative limb length ratio) as a potentially useful measure of identifying morphological niche uniqueness and a potential measure of invasiveness potential in anuran amphibians.JSK thanks the Australian Research Council for ongoing support
    • …
    corecore