7 research outputs found

    Detection of invasive species in Wetlands: Practical dl with heavily imbalanced data

    Get PDF
    Deep Learning (DL) has become popular due to its ease of use and accuracy, with Transfer Learning (TL) effectively reducing the number of images needed to solve environmental problems. However, this approach has some limitations which we set out to explore: Our goal is to detect the presence of an invasive blueberry species in aerial images of wetlands. This is a key problem in ecosystem protection which is also challenging in terms of DL due to the severe imbalance present in the data. Results for the ResNet50 network show a high classification accuracy while largely ignoring the blueberry class, rendering these results of limited practical interest to detect that specific class. Moreover, by using loss function weighting and data augmentation results more akin to our practical application, our goals can be obtained. Our experiments regarding TL show that ImageNet weights do not produce satisfactory results when only the final layer of the network is trained. Furthermore, only minor gains are obtained compared with random weights when the whole network is retrained. Finally, in a study of state-of-the-art DL architectures best results were obtained by the ResNeXt architecture with 93.75 True Positive Rate and 98.11 accuracy for the Blueberry class with ResNet50, Densenet, and wideResNet obtaining close results. © 2020 by the authors. Licensee MDPI, Basel, Switzerland

    Analysis of UAV-acquired wetland orthomosaics using GIS, computer vision, computational topology and deep learning

    Get PDF
    Invasive blueberry species endanger the sensitive environment of wetlands and protection laws call for management measures. Therefore, methods are needed to identify blueberry bushes, locate them, and characterise their distribution and properties with a minimum of disturbance. UAVs (Unmanned Aerial Vehicles) and image analysis have become important tools for classification and detection approaches. In this study, techniques, such as GIS (Geographical Information Systems) and deep learning, were combined in order to detect invasive blueberry species in wetland environments. Images that were collected by UAV were used to produce orthomosaics, which were analysed to produce maps of blueberry location, distribution, and spread in each study site, as well as bush height and area information. Deep learning networks were used with transfer learning and unfrozen weights in order to automatically detect blueberry bushes reaching True Positive Values (TPV) of 93.83% and an Overall Accuracy (OA) of 98.83%. A refinement of the result masks reached a Dice of 0.624. This study provides an efficient and effective methodology to study wetlands while using different techniques. © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This

    Analysis of UAV-Acquired Wetland Orthomosaics Using GIS, Computer Vision, Computational Topology and Deep Learning

    No full text
    Invasive blueberry species endanger the sensitive environment of wetlands and protection laws call for management measures. Therefore, methods are needed to identify blueberry bushes, locate them, and characterise their distribution and properties with a minimum of disturbance. UAVs (Unmanned Aerial Vehicles) and image analysis have become important tools for classification and detection approaches. In this study, techniques, such as GIS (Geographical Information Systems) and deep learning, were combined in order to detect invasive blueberry species in wetland environments. Images that were collected by UAV were used to produce orthomosaics, which were analysed to produce maps of blueberry location, distribution, and spread in each study site, as well as bush height and area information. Deep learning networks were used with transfer learning and unfrozen weights in order to automatically detect blueberry bushes reaching True Positive Values (TPV) of 93.83% and an Overall Accuracy (OA) of 98.83%. A refinement of the result masks reached a Dice of 0.624. This study provides an efficient and effective methodology to study wetlands while using different techniques

    Computer Vision and Deep Learning Techniques for the Analysis of Drone-Acquired Forest Images, a Transfer Learning Study

    No full text
    Unmanned Aerial Vehicles (UAV) are becoming an essential tool for evaluating the status and the changes in forest ecosystems. This is especially important in Japan due to the sheer magnitude and complexity of the forest area, made up mostly of natural mixed broadleaf deciduous forests. Additionally, Deep Learning (DL) is becoming more popular for forestry applications because it allows for the inclusion of expert human knowledge into the automatic image processing pipeline. In this paper we study and quantify issues related to the use of DL with our own UAV-acquired images in forestry applications such as: the effect of Transfer Learning (TL) and the Deep Learning architecture chosen or whether a simple patch-based framework may produce results in different practical problems. We use two different Deep Learning architectures (ResNet50 and UNet), two in-house datasets (winter and coastal forest) and focus on two separate problem formalizations (Multi-Label Patch or MLP classification and semantic segmentation). Our results show that Transfer Learning is necessary to obtain satisfactory outcome in the problem of MLP classification of deciduous vs evergreen trees in the winter orthomosaic dataset (with a 9.78% improvement from no transfer learning to transfer learning from a a general-purpose dataset). We also observe a further 2.7% improvement when Transfer Learning is performed from a dataset that is closer to our type of images. Finally, we demonstrate the applicability of the patch-based framework with the ResNet50 architecture in a different and complex example: Detection of the invasive broadleaf deciduous black locust (Robinia pseudoacacia) in an evergreen coniferous black pine (Pinus thunbergii) coastal forest typical of Japan. In this case we detect images containing the invasive species with a 75% of True Positives (TP) and 9% False Positives (FP) while the detection of native trees was 95% TP and 10% FP

    Individual Sick Fir Tree (Abies mariesii) Identification in Insect Infested Forests by Means of UAV Images and Deep Learning

    No full text
    Insect outbreaks are a recurrent natural phenomenon in forest ecosystems expected to increase due to climate change. Recent advances in Unmanned Aerial Vehicles (UAV) and Deep Learning (DL) Networks provide us with tools to monitor them. In this study we used nine orthomosaics and normalized Digital Surface Models (nDSM) to detect and classify healthy and sick Maries fir trees as well as deciduous trees. This study aims at automatically classifying treetops by means of a novel computer vision treetops detection algorithm and the adaptation of existing DL architectures. Considering detection alone, the accuracy results showed 85.70% success. In terms of detection and classification, we were able to detect/classify correctly 78.59% of all tree classes (39.64% for sick fir). However, with data augmentation, detection/classification percentage of the sick fir class rose to 73.01% at the cost of the result accuracy of all tree classes that dropped 63.57%. The implementation of UAV, computer vision and DL techniques contribute to the development of a new approach to evaluate the impact of insect outbreaks in forest
    corecore