75 research outputs found

    Serological Patterns of Brucellosis, Leptospirosis and Q Fever in Bos indicus Cattle in Cameroon

    Get PDF
    Brucellosis, leptospirosis and Q fever are important infections of livestock causing a range of clinical conditions including abortions and reduced fertility. In addition, they are all important zoonotic infections infecting those who work with livestock and those who consume livestock related products such as milk, producing non-specific symptoms including fever, that are often misdiagnosed and that can lead to severe chronic disease. This study used banked sera from the Adamawa Region of Cameroon to investigate the seroprevalences and distributions of seropositive animals and herds. A classical statistical and a multi-level prevalence modelling approach were compared. The unbiased estimates were 20% of herds were seropositive for Brucella spp. compared to 95% for Leptospira spp. and 68% for Q fever. The within-herd seroprevalences were 16%, 35% and 39% respectively. There was statistical evidence of clustering of seropositive brucellosis and Q fever herds. The modelling approach has the major advantage that estimates of seroprevalence can be adjusted for the sensitivity and specificity of the diagnostic test used and the multi-level structure of the sampling. The study found a low seroprevalence of brucellosis in the Adamawa Region compared to a high proportion of leptospirosis and Q fever seropositive herds. This represents a high risk to the human population as well as potentially having a major impact on animal health and productivity in the region

    Evaluation of three 3ABC ELISAs for foot-and-mouth disease non-structural antibodies using latent class analysis

    Get PDF
    BACKGROUND: Foot-and-mouth disease (FMD) is a highly contagious viral disease of even-toed ungulates. Serological diagnosis/surveillance of FMD presents several problems as there are seven serotypes worldwide and in the event of vaccination it may be necessary to be able to identify FMD infected/exposed animals irrespective of their vaccination status. The recent development of non-structural 3ABC protein (NSP) ELISA tests has greatly advanced sero-diagnosis/surveillance as these tests detect exposure to live virus for any of the seven serotypes of FMD, even in vaccinated populations. This paper analyses the performance of three NSP tests using a Bayesian formulation of the Hui-Walter latent class model to estimate test sensitivity and specificity in the absence of a "gold-standard" test, using sera from a well described cattle population in Cameroon with endemic FMD. RESULTS: The analysis found a high sensitivity and specificity for both the Danish C-ELISA and the World Organisation for Animal Health (O.I.E.) recommended South American I-ELISA. However, the commercial CHEKIT kit, though having high specificity, has very low sensitivity. The results of the study suggests that for NSP ELISAs, latent class models are a useful alternative to the traditional approach of evaluating diagnostic tests against a known "gold-standard" test as imperfections in the "gold-standard" may give biased test characteristics. CONCLUSION: This study demonstrates that when applied to naturally infected zebu cattle managed under extensive rangeland conditions, the FMD ELISAs may not give the same parameter estimates as those generated from experimental studies. The Bayesian approach allows for full posterior probabilities and capture of the uncertainty in the estimates. The implications of an imperfect specificity are important for the design and interpretation of sero-surveillance data and may result in excessive numbers of false positives in low prevalence situations unless a follow-up confirmatory test such as the enzyme linked immunoelectrotransfer blot (EITB) is used

    Dogslife: A web-based longitudinal study of Labrador Retriever health in the UK

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Dogslife is the first large-scale internet-based longitudinal study of canine health. The study has been designed to examine how environmental and genetic factors influence the health and development of a birth cohort of UK-based pedigree Labrador Retrievers.</p> <p>Results</p> <p>In the first 12 months of the study 1,407 Kennel Club (KC) registered eligible dogs were recruited, at a mean age of 119 days of age (SD 69 days, range 3 days – 504 days). Recruitment rates varied depending upon the study team’s ability to contact owners. Where owners authorised the provision of contact details 8.4% of dogs were recruited compared to 1.3% where no direct contact was possible. The proportion of dogs recruited was higher for owners who transferred the registration of their puppy from the breeder to themselves with the KC, and for owners who were sent an e-mail or postcard requesting participation in the project. Compliance with monthly updates was highly variable. For the 280 dogs that were aged 400 days or more on the 30<sup>th</sup> June 2011, we estimated between 39% and 45% of owners were still actively involved in the project. Initial evaluation suggests that the cohort is representative of the general population of the KC registered Labrador Retrievers eligible to enrol with the project. Clinical signs of illnesses were reported in 44.3% of Labrador Retrievers registered with Dogslife (median age of first illness 138 days), although only 44.1% of these resulted in a veterinary presentation (median age 316 days).</p> <p>Conclusions</p> <p>The web-based platform has enabled the recruitment of a representative population of KC registered Labrador Retrievers, providing the first large-scale longitudinal population-based study of dog health. The use of multiple different methods (e-mail, post and telephone) of contact with dog owners was essential to maximise recruitment and retention of the cohort.</p

    Transcriptome analysis reveals immune pathways underlying resistance in the common carp Cyprinus carpio against the oomycete Aphanomyces invadans

    Get PDF
    Infection with Aphanomyces invadans is a serious fish disease with major global impacts. Despite affecting over 160 fish species, some of the species like the common carp Cyprinus carpio are resistant to A. invadans infection. In the present study, we investigated the transcriptomes of head kidney of common carp experimentally infected with A. invadans. In time course analysis, 5288 genes were found to be differentially expressed (DEGs), of which 731 were involved in 21 immune pathways. The analysis of immune-related DEGs suggested that efficient processing and presentation of A. invadans antigens, enhanced phagocytosis, recognition of pathogen-associated molecular patterns, and increased recruitment of leukocytes to the sites of infection contribute to resistance of common carp against A. invadans. Herein, we provide a systematic understanding of the disease resistance mechanisms in common carp at molecular level as a valuable resource for developing disease management strategies for this devastating fish-pathogenic oomycete

    Molecular insights into the mechanisms of susceptibility of Labeo rohita against oomycete Aphanomyces invadans

    Get PDF
    Aphanomyces invadans, the causative agent of epizootic ulcerative syndrome, is one of the most destructive pathogens of freshwater fishes. To date, the disease has been reported from over 160 fish species in 20 countries and notably, this is the first non-salmonid disease that has resulted in major impacts globally. In particular, Indian major carps (IMCs) are highly susceptible to this disease. To increase our knowledge particularly with regards to host immune response against A. invadans infection in a susceptible host, the gene expression profile in head kidney of A. invadans-infected and control rohu, Labeo rohita was investigated using RNA sequencing. Time course analysis of RNA-Seq data revealed 5608 differentially expressed genes, involved among others in Antigen processing and presentation, Leukocyte transendothelial migration, IL-17 signaling, Chemokine signaling, C-type lectin receptor signaling and Toll-like receptor signaling pathways. In the affected pathways, a number of immune genes were found to be downregulated, suggesting an immune evasion strategy of A. invadans in establishing the infection. The information generated in this study offers first systematic mechanistic understanding of the host-pathogen interaction that might underpin the development of new management strategies for this economically devastating fish-pathogenic oomycete A. invadans

    Bovine tuberculosis antemortem diagnostic test agreement and disagreement in a naturally infected African cattle population.

    Get PDF
    The interferon-gamma (IFN-γ) assay and single comparative cervical skin test (SCITT) are used to estimate bovine tuberculosis (bTB) prevalence globally. Prevalence estimates of bTB, caused by Mycobacterium bovis, are poorly quantified in many Sub-Saharan African (SSA) cattle populations. Furthermore, antemortem diagnostic performance can vary at different stages of bTB pathogenesis and in different cattle populations. In this study, we aim to explore the level of agreement and disagreement between the IFN-γ assay and SCITT test, along with the drivers for disagreement, in a naturally infected African cattle population. In, 2013, a pastoral cattle population was sampled using a stratified clustered cross-sectional study in Cameroon. A total of 100 pastoral cattle herds in the North West Region (NWR) and the Vina Division (VIN) were sampled totalling 1,448 cattle. Individual animal data and herd-level data were collected, and animals were screened using both the IFN-γ assay and SCITT. Serological ELISAs were used to detect exposure to immunosuppressing co-infections. Agreement analyses were used to compare the performance between the two bTB diagnostic tests, and multivariable mixed-effects logistic regression models (MLR) were developed to investigate the two forms of IFN-γ assay and SCITT binary disagreement. Best agreement using the Cohen's κ statistic, between the SCITT (>2 mm) and the IFN-γ assay implied a ‘fair-moderate' agreement for the NWR [κ = 0.42 (95%CI: 0.31–0.53)] and ‘poor-moderate' for the VIN [κ = 0.33 (95% CI: 0.18–0.47)]. The main test disagreement was the animals testing positive on the IFN-γ assay and negative by the SCITT. From MLR modeling, adults (adults OR: 7.57; older adults OR = 7.21), females (OR = 0.50), bovine leucosis (OR = 2.30), and paratuberculosis positivity (OR = 6.54) were associated with IFN-γ-positive/SCITT-negative disagreement. Subsets to investigate diagnostic test disagreement for being SCITT-positive and IFN-γ-negative also identified that adults (adults OR = 15.74; older adults OR = 9.18) were associated with IFN-γ-negative/SCITT-positive disagreement. We demonstrate that individual or combined use of the IFN-γ assay and SCITT can lead to a large variation in bTB prevalence estimates. Considering that animal level factors were associated with disagreement between the IFN-γ assay and SCITT in this study, future work should further investigate their impact on diagnostic test performance to develop the approaches to improve SSA prevalence estimates

    Seroepidemiology of Crimean-Congo Haemorrhagic Fever among cattle in Cameroon:Implications from a One Health perspective

    Get PDF
    BACKGROUND: Crimean-Congo Haemorrhagic Fever (CCHF) is a tick-borne viral zoonotic disease distributed across several continents and recognized as an ongoing health threat. In humans, the infection can progress to a severe disease with high fatality, raising public health concerns due to the limited prophylactic and therapeutic options available. Animal species, clinically unaffected by the virus, serve as viral reservoirs and amplifier hosts, and can be a valuable tool for surveillance. Little is known about the occurrence and prevalence of Crimean-Congo Haemorrhagic Fever Virus (CCHFV) in Cameroon. Knowledge on CCHFV exposure and the factors associated with its presence in sentinel species are a valuable resource to better understand transmission dynamics and assess local risks for zoonotic disease emergence. METHODS AND FINDINGS: We conducted a CCHFV serological survey and risk factor analysis for animal level seropositivity in pastoral and dairy cattle in the North West Region (NWR) and the Vina Division (VD) of the Adamawa Region in Cameroon. Seroprevalence estimates were adjusted for sampling design-effects and test performance. In addition, explanatory multivariable logistic regression mixed-effects models were fit to estimate the effect of animal characteristics, husbandry practices, risk contacts and ecological features on the serological status of pastoral cattle. The overall seroprevalence was 56.0% (95% CI 53.5–58.6) and 6.7% (95% CI 2.6–16.1) among pastoral and dairy cattle, respectively. Animals going on transhumance had twice the odds of being seropositive (OR 2.0, 95% CI 1.1–3.8), indicating that animal movements could be implicated in disease expansion. From an ecological perspective, absolute humidity (OR 0.6, 95% CI 0.4–0.9) and shrub density (OR 2.1, 95% CI 1.4–3.2) were associated with seropositivity, which suggests an underlying viral dynamic connecting vertebrate host and ticks in a complex transmission network. CONCLUSIONS: This study demonstrated high seroprevalence levels of CCHFV antibodies in cattle in Cameroon indicating a potential risk to human populations. However, current understanding of the underlying dynamics of CCHFV locally and the real risk for human populations is incomplete. Further studies designed using a One Health approach are required to improve local knowledge of the disease, host interactions and environmental risk factors. This information is crucial to better project the risks for human populations located in CCHFV-suitable ecological niches

    The Contact Structure of Great Britain's Salmon and Trout Aquaculture Industry

    Get PDF
    We analyse the network structure of the British salmonid aquaculture industry from the perspective of infectious disease control. We combine for the first time live fish transport (or movement) data covering England and Wales with data covering Scotland and include network layers representing potential transmission by rivers, sea water and local transmission via human or animal vectors in the immediate vicinity of each farm or fishery site. We find that 7.2% of all live fish transports cross the England-Scotland border and network analysis shows that 87% of English and Welsh sites and 72% of Scottish sites are reachable from cross-border connections via live fish transports alone. Consequently, from a disease-control perspective, the contact structures of England and Wales and of Scotland should not be considered in isolation. We also show that large epidemics require the live fish movement network and so control strategies targeting movements can be very effective. While there is relatively low risk of widespread epidemics on the live fish transport network alone, the potential risk is substantially amplified by the combined interaction of multiple network layers

    Bovine tuberculosis epidemiology in Cameroon, Central Africa, based on the interferon gamma assay

    Get PDF
    Despite sub-Saharan Africa (SSA) accounting for ~20% of the global cattle population, prevalence estimates and related risk factors of bovine tuberculosis (bTB) are still poorly described. The increased sensitivity of the IFN-γ assay and its practical benefits suggest the test could be useful to investigate bTB epidemiology in SSA. This study used a population-based sample to estimate bTB prevalence, identify risk factors and estimate the effective reproductive rate in Cameroonian cattle populations. A cross-sectional study was conducted in the North West Region (NWR) and the Vina Division (VIN) of Cameroon in 2013. A regional stratified sampling frame of pastoral cattle herds produced a sample of 1,448 cattle from 100 herds. In addition, a smaller cross-sectional study sampled 60 dairy cattle from 46 small-holder co-operative dairy farmers in the NWR. Collected blood samples were stimulated with bovine and avian purified protein derivatives, with extracted plasma screened using the IFN-γ enzyme-linked immunosorbent assay (Prionics Bovigam®). Design-adjusted population prevalences were estimated, and multivariable mixed-effects logistic regression models using Bayesian inference techniques identified the risk factors for IFN-γ positivity. Using the IFN-γ assay, the prevalence of bTB in the dairy cattle was 21.7% (95% CI: 11.2–32.2). The design-adjusted prevalence of bTB in cattle kept by pastoralists was 11.4% (95% CI: 7.6–17.0) in the NWR and 8.0% (95% CI: 4.7–13.0) in the VIN. A within-herd prevalence estimate for pastoralist cattle also supported that the NWR had higher prevalence herds than the VIN. Additionally, the estimates of the effective reproductive rate Rt were 1.12 for the NWR and 1.06 for the VIN, suggesting different transmission rates within regional cattle populations in Cameroon. For pastoral cattle, an increased risk of IFN-γ assay positivity was associated with being male (OR = 1.89; 95% CI:1.15–3.09), increasing herd size (OR = 1.02; 95% CI:1.01–1.03), exposure to the bovine leucosis virus (OR = 2.45; 95% CI: 1.19–4.84) and paratuberculosis (OR = 9.01; 95% CI: 4.17–20.08). Decreased odds were associated with contacts at grazing, buffalo (OR = 0.20; 95% CI: 0.03–0.97) and increased contact with other herds [1–5 herds: OR = 0.16 (95% CI: 0.04–0.55); 6+ herds: OR = 0.18 (95% CI: 0.05–0.64)]. Few studies have used the IFN-γ assay to describe bTB epidemiology in SSA. This study highlights the endemic situation of bTB in Cameroon and potential public health risks from dairy herds. Further work is needed to understand the IFN-γ assay performance, particularly in the presence of co-infections, and how this information can be used to develop control strategies in the SSA contexts
    corecore