11 research outputs found

    Energy avalanches in a rice-pile model

    Full text link
    We investigate a one-dimensional rice-pile model. We show that the distribution of dissipated potential energy decays as a power law with an exponent α=1.53\alpha=1.53. The system thus provides a one-dimensional example of self-organized criticality. Different driving conditions are examined in order to allow for comparison with experiments.Comment: 8 pages, elsart sty files (provided

    Directed percolation with an absorbing boundary

    Full text link
    We consider directed percolation with an absorbing boundary in 1+1 and 2+1 dimensions. The distribution of cluster lifetimes and sizes depend on the boundary. The new scaling exponents can be related to the exponents characterizing standard directed percolation in 1+1 dimension. In addition, we investigate the backbone cluster and red bonds, and calculate the distribution of living sites along the absorbing boundary.Comment: 10 latex pages, including 4 figure

    Self-organized criticality in a rice-pile model

    Full text link
    We present a new model for relaxations in piles of granular material. The relaxations are determined by a stochastic rule which models the effect of friction between the grains. We find power-law distributions for avalanche sizes and lifetimes characterized by the exponents τ=1.53±0.05\tau = 1.53 \pm 0.05 and y=1.84±0.05y = 1.84 \pm 0.05, respectively. For the discharge events, we find a characteristic size that scales with the system size as LμL^\mu, with μ=1.20±0.05\mu = 1.20 \pm 0.05. We also find that the frequency of the discharge events decrease with the system size as LμL^{-\mu'} with μ=1.20±0.05\mu' = 1.20 \pm 0.05.Comment: 4 pages, RevTex, multicol, epsf, rotate (sty files provided). To appear Phys. Rev. E Rapid Communication (Nov or Dec 96

    Directed Percolation with a Wall or Edge

    Full text link
    We examine the effects of introducing a wall or edge into a directed percolation process. Scaling ansatzes are presented for the density and survival probability of a cluster in these geometries, and we make the connection to surface critical phenomena and field theory. The results of previous numerical work for a wall can thus be interpreted in terms of surface exponents satisfying scaling relations generalising those for ordinary directed percolation. New exponents for edge directed percolation are also introduced. They are calculated in mean-field theory and measured numerically in 2+1 dimensions.Comment: 14 pages, submitted to J. Phys.

    Self-Organized Branching Processes: A Mean-Field Theory for Avalanches

    Get PDF
    We discuss mean-field theories for self-organized criticality and the connection with the general theory of branching processes. We point out that the nature of the self-organization is not addressed properly by the previously proposed mean-field theories. We introduce a new mean-field model that explicitly takes the boundary conditions into account; in this way, the local dynamical rules are coupled to a global equation that drives the control parameter to its critical value. We study the model numerically, and analytically we compute the avalanche distributions.Comment: 4 pages + 4 ps figure

    Noisy Kuramoto-Sivashinsky equation for an erosion model

    Get PDF
    We derive the continuum equation for a discrete model for ion sputtering. We follow an approach based on the master equation, and discuss how it can be truncated to a Fokker-Planck equation and mapped to a discrete Langevin equation. By taking the continuum limit, we arrive at the Kuramoto-Sivashinsky equation with a stochastic noise term.Comment: latex (w/ multicol.sty), 4 pages; to appear in Physical Review E (Oct 1996

    Universality classes for rice-pile models

    Full text link
    We investigate sandpile models where the updating of unstable columns is done according to a stochastic rule. We examine the effect of introducing nonlocal relaxation mechanisms. We find that the models self-organize into critical states that belong to three different universality classes. The models with local relaxation rules belong to a known universality class that is characterized by an avalanche exponent τ1.55\tau \approx 1.55, whereas the models with nonlocal relaxation rules belong to new universality classes characterized by exponents τ1.35\tau \approx 1.35 and τ1.63\tau \approx 1.63. We discuss the values of the exponents in terms of scaling relations and a mapping of the sandpile models to interface models.Comment: 4 pages, including 3 figure

    Surface Critical Behavior in Systems with Non-Equilibrium Phase Transitions

    Full text link
    We study the surface critical behavior of branching-annihilating random walks with an even number of offspring (BARW) and directed percolation (DP) using a variety of theoretical techniques. Above the upper critical dimensions d_c, with d_c=4 (DP) and d_c=2 (BARW), we use mean field theory to analyze the surface phase diagrams using the standard classification into ordinary, special, surface, and extraordinary transitions. For the case of BARW, at or below the upper critical dimension, we use field theoretic methods to study the effects of fluctuations. As in the bulk, the field theory suffers from technical difficulties associated with the presence of a second critical dimension. However, we are still able to analyze the phase diagrams for BARW in d=1,2, which turn out to be very different from their mean field analog. Furthermore, for the case of BARW only (and not for DP), we find two independent surface beta_1 exponents in d=1, arising from two distinct definitions of the order parameter. Using an exact duality transformation on a lattice BARW model in d=1, we uncover a relationship between these two surface beta_1 exponents at the ordinary and special transitions. Many of our predictions are supported using Monte-Carlo simulations of two different models belonging to the BARW universality class.Comment: 19 pages, 12 figures, minor additions, 1 reference adde

    DIRECTED PERCOLATION AND OTHER SYSTEMS WITH ABSORBING STATES: IMPACT OF BOUNDARIES

    No full text
    We review the critical behavior of nonequilibrium systems, such as directed percolation (DP) and branching-annihilating random walks (BARW), which possess phase transitions into absorbing states. After reviewing the bulk scaling behavior of these models, we devote the main part of this review to analyzing the impact of walls on their critical behavior. We discuss the possible boundary universality classes for the DP and BARW models, which can be described by a general scaling theory which allows for two independent surface exponents in addition to the bulk critical exponents. Above the upper critical dimension dc, we review the use of mean field theories, whereas in the regime d < dc, where fluctuations are important, we examine the application of field theoretic methods. Of particular interest is the situation in d = 1, which has been extensively investigated using numerical simulations and series expansions. Although DP and BARW fit into the same scaling theory, they can still show very different surface behavior: for DP some exponents are degenerate, a property not shared with the BARW model. Moreover, a “hidden ” duality symmetry of BARW in d = 1 is broken by the boundary and this relates exponents and boundary conditions in an intricate way
    corecore