8 research outputs found

    The importance of farmland for the conservation of the brown hyaena Parahyaena brunnea

    Get PDF
    The conservation of wide-ranging, territorial carnivores presents many challenges, not least the inadequacy of many protected areas in providing sufficient space to allow such species to maintain viable populations. As a result populations occurring outside protected areas may be of considerable importance for the conservation of some species, although the significance of these areas is poorly understood. Brown hyaenas Parahyaena brunnea are categorized as Near Threatened on the IUCN Red List and recent research suggests the species may be particularly vulnerable to habitat loss and the conversion of land to agriculture. Here we report on the population density and abundance of brown hyaenas in an area of commercial farmland in western Botswana. Mean brown hyaena density estimated from camera-trap surveys was 2.3 per 100 km2 and from spoor surveys 2.88 per 100 km2, which are comparable to estimates reported for protected areas. Estimated densities were higher on farms used for livestock production than on those used for game farming, suggesting that the species can tolerate land-use change where reliable alternative food resources exist. Our results indicate that populations of brown hyaenas in non-protected areas comprise a significant proportion of the global population and that such areas may be of critical importance for their conservation

    Evidence of a high density population of harvested leopards in a montane environment

    Get PDF
    Populations of large carnivores can persist in mountainous environments following extensive land use change and the conversion of suitable habitat for agriculture and human habitation in lower lying areas of their range. The significance of these populations is poorly understood, however, and little attention has focussed on why certain mountainous areas can hold high densities of large carnivores and what the conservation implications of such populations might be. Here we use the leopard (Panthera pardus) population in the western Soutpansberg Mountains, South Africa, as a model system and show that montane habitats can support high numbers of leopards. Spatially explicit capture-recapture (SECR) analysis recorded the highest density of leopards reported outside of state-protected areas in sub-Saharan Africa. This density represents a temporally high local abundance of leopards and we explore the explanations for this alongside some of the potential conservation implications

    Economical crowdsourcing for camera trap image classification

    Get PDF
    Camera trapping is widely used to monitor mammalian wildlife but creates large image datasets that must be classified. In response, there is a trend towards crowdsourcing image classification. For high‐profile studies of charismatic faunas, many classifications can be obtained per image, enabling consensus assessments of the image contents. For more local‐scale or less charismatic communities, however, demand may outstrip the supply of crowdsourced classifications. Here, we consider MammalWeb, a local‐scale project in North East England, which involves citizen scientists in both the capture and classification of sequences of camera trap images. We show that, for our global pool of image sequences, the probability of correct classification exceeds 99% with about nine concordant crowdsourced classifications per sequence. However, there is high variation among species. For highly recognizable species, species‐specific consensus algorithms could be even more efficient; for difficult to spot or easily confused taxa, expert classifications might be preferable. We show that two types of incorrect classifications – misidentification of species and overlooking the presence of animals – have different impacts on the confidence of consensus classifications, depending on the true species pictured. Our results have implications for data capture and classification in increasingly numerous, local‐scale citizen science projects. The species‐specific nature of our findings suggests that the performance of crowdsourcing projects is likely to be highly sensitive to the local fauna and context. The generality of consensus algorithms will, thus, be an important consideration for ecologists interested in harnessing the power of the crowd to assist with camera trapping studies

    Citizen scientists: school students conducting, contributing to and communicating ecological research – experiences of a school–university partnership

    Get PDF
    Started in north-east England in 2015, MammalWeb aims to improve our knowledge of British mammals through the use of motion-sensing camera traps. Fundamental to the project is the involvement of local communities and individuals who act as citizen scientists. They contribute to the collection and analysis of the camera trap photographic data. Here, we jointly describe our experiences as a partnership between Belmont Community School and Durham University. School students became citizen scientists and ecological ambassadors who took part in research and designed outreach materials for their local community. We discuss what we learned and the resulting mutual benefits

    Pines

    Get PDF
    Pinus is the most important genus within the Family Pinaceae and also within the gymnosperms by the number of species (109 species recognized by Farjon 2001) and by its contribution to forest ecosystems. All pine species are evergreen trees or shrubs. They are widely distributed in the northern hemisphere, from tropical areas to northern areas in America and Eurasia. Their natural range reaches the equator only in Southeast Asia. In Africa, natural occurrences are confined to the Mediterranean basin. Pines grow at various elevations from sea level (not usual in tropical areas) to highlands. Two main regions of diversity are recorded, the most important one in Central America (43 species found in Mexico) and a secondary one in China. Some species have a very wide natural range (e.g., P. ponderosa, P. sylvestris). Pines are adapted to a wide range of ecological conditions: from tropical (e.g., P. merkusii, P. kesiya, P. tropicalis), temperate (e.g., P. pungens, P. thunbergii), and subalpine (e.g., P. albicaulis, P. cembra) to boreal (e.g., P. pumila) climates (Richardson and Rundel 1998, Burdon 2002). They can grow in quite pure stands or in mixed forest with other conifers or broadleaved trees. Some species are especially adapted to forest fires, e.g., P. banksiana, in which fire is virtually essential for cone opening and seed dispersal. They can grow in arid conditions, on alluvial plain soils, on sandy soils, on rocky soils, or on marsh soils. Trees of some species can have a very long life as in P. longaeva (more than 3,000 years)
    corecore