914 research outputs found

    Academic Dishonesty: Then and Now, A Comparison

    Get PDF

    Correcting datasets leads to more homogeneous early-twentieth-century sea surface warming

    Get PDF
    Existing estimates of sea surface temperatures (SSTs) indicate that, during the early twentieth century, the North Atlantic and northeast Pacific oceans warmed by twice the global average, whereas the northwest Pacific Ocean cooled by an amount equal to the global average1,2,3,4. Such a heterogeneous pattern suggests first-order contributions from regional variations in forcing or in ocean–atmosphere heat fluxes5,6. These older SST estimates are, however, derived from measurements of water temperatures in ship-board buckets, and must be corrected for substantial biases7,8,9. Here we show that correcting for offsets among groups of bucket measurements leads to SST variations that correlate better with nearby land temperatures and are more homogeneous in their pattern of warming. Offsets are identified by systematically comparing nearby SST observations among different groups10. Correcting for offsets in German measurements decreases warming rates in the North Atlantic, whereas correcting for Japanese measurement offsets leads to increased and more uniform warming in the North Pacific. Japanese measurement offsets in the 1930s primarily result from records having been truncated to whole degrees Celsius when the records were digitized in the 1960s. These findings underscore the fact that historical SST records reflect both physical and social dimensions in data collection, and suggest that further opportunities exist for improving the accuracy of historical SST records9,11

    Functional desensitization of the β 2 adrenoceptor is not dependent on agonist efficacy

    Get PDF
    © 2015 John Wiley & Sons Ltd, British Pharmacological Society and American Society for Pharmacology and Experimental Therapeutics. Chronic treatment with β2 adrenoceptor agonists is recommended as a first-line maintenance therapy for chronic obstructive pulmonary disease (COPD). However, a potential consequence of long-term treatment may be the loss of functional response (tachyphylaxis) over time. In this study, we have investigated the tendency of such agonists, with a range of efficacies, to develop functional desensitization to cAMP responses in primary human bronchial smooth muscle cells following prolonged agonist exposure. The data show that upon repeat exposure, all agonists produced functional desensitization to the same degree and rate. In addition, β2 adrenoceptor internalization and β-arrestin-2 recruitment were monitored using β2·eGFP visualization and the PathHunter™ β-arrestin-2 assay, respectively. All agonists were capable of causing robust receptor internalization and β-arrestin-2 recruitment, the rate of which was influenced by agonist efficacy, as measured in those assays. In summary, although a relationship exists between agonist efficacy and the rate of both receptor internalization and β-arrestin-2 recruitment, there is no correlation between agonist efficacy and the rate or extent of functional desensitization

    Federal Expenditures on Elementary-Age Children in 2008 (Ages 6 through 11)

    Get PDF
    Examines 2008 federal expenditures on elementary-age children, where funds are spent, and how; estimates 2009-12 expenditures; and outlines policy issues affecting this age group, including the importance of high-quality education and obesity prevention

    Federal Expenditures on Pre-Kindergarteners and Kindergarteners in 2008 (Ages 3 through 5)

    Get PDF
    Examines 2008 federal, state, and local expenditures on benefits for children ages 3 to 5. Outlines the importance of high-quality care, education, and social services during pre-K and kindergarten years to developmental, economic, and health outcomes

    Community Tourism Assessment for Lindstrom, Minnesota

    Get PDF

    AirSeaFluxCode: Open-source software for calculating turbulent air-sea fluxes from meteorological parameters

    Get PDF
    The turbulent exchanges, or fluxes, of heat, moisture and momentum between the atmosphere and the ocean play a crucial role in the Earth’s climate system. Direct measurements of turbulent fluxes are very challenging and sparse, and do not span the full range of environmental conditions that exist over the ocean. This means that empirical “bulk formulae” parameterizations that relate direct flux observations to concurrent measurements of the mean meteorological and sea surface variables contain considerable uncertainty. In this paper, we present a Python 3.6 (or higher) open-source software package “AirSeaFluxCode” for the computation of the heat (latent and sensible) and momentum fluxes. Ten different parameterizations are included, each based on published descriptions or code and each derived from a different set of observations, or different assumptions about the turbulent exchange processes. They represent a range of current expert opinion on how the fluxes depend on mean properties and can be used to explore uncertainty in calculated fluxes. AirSeaFluxCode also allows the adjustment of the mean meteorological input parameters (air temperature, humidity and wind speed) from the height at which they are obtained to a user-defined output height. This height adjustment enables the comparison of measurements, or model-derived values, made at different heights above sea-level. The parameterizations calculate the fluxes using input parameters that are relatively easily to measure, or are available as model output: wind speed, air temperature, sea surface temperature, atmospheric pressure and humidity. Where original code is available we have compared its output with that of AirSeaFluxCode. Any changes made to increase consistency across algorithms by standardizing computational methods or calculation of meteorological variables, for example, are discussed and the impacts quantified: these are shown to be insignificant except for a few cases where conditions were extreme, and AirSeaFluxCode is shown to be robust. We also investigate the impact on the fluxes caused by different assumptions about the exchange processes, or the choices inherent in the implementation of the parameterizations. For example, sea surface temperature usually refers to data typically obtained at depths of between 1 and 10 m. However, since some parameterizations require a “skin” sea surface temperature, code that adjusts temperature at depth to skin temperature is included: this has a very significant impact on the fluxes. Selecting a parameterization that is appropriate for the available sea surface temperature will avoid the need to adjust the sea temperature data and the uncertainties associated with that adjustment, and will also avoid the biases due to use of the “wrong” measure of temperature. Significant differences also resulted from assumptions about the size of reduction in sea surface humidity to account for salinity effects: the uncertainty in the reduction factor needs to be quantified in future analyses. Fluxes in extreme conditions are particularly uncertain since the transfer coefficients in the different parameterizations vary most at very high and very low wind speeds. Low wind speeds are also challenging for numerical implementation since choices have to be made regarding: convergence criteria for the iterative calculation, inclusion of a parameterization for convective gustiness, or application of ad hoc limits to various parameters. All of these choices can significantly affect the flux estimates for light winds

    Electron Paramagnetic Resonance and Optical Absorption Study of Acceptors in CdSiP\u3csub\u3e2\u3c/sub\u3e Crystals

    Get PDF
    Cadmium silicon diphosphide (CdSiP2) is a nonlinear material often used in optical parametric oscillators (OPOs) to produce tunable laser output in the mid-infrared. Absorption bands associated with donors and acceptors may overlap the pump wavelength and adversely affect the performance of these OPOs. In the present investigation, electron paramagnetic resonance (EPR) is used to identify two unintentionally present acceptors in large CdSiP2 crystals. These are an intrinsic silicon-on-phosphorus antisite and a copper impurity substituting for cadmium. When exposed to 633 µm laser light at temperatures near or below 80 K, they convert to their neutral paramagnetic charge states (Si0P and Cu0Cd) and can be monitored with EPR. The corresponding donor serving as the electron trap is the silicon-on-cadmium antisite (Si2+Cd before illumination and Si+Cd after illumination). Removing the 633 µm light and warming the crystal above 90 K quickly destroys the EPR signals from both acceptors and the associated donor. Broad optical absorption bands peaking near 0.8 and 1.4 μm are also produced at low temperature by the 633 µm light. These absorption bands are associated with the Si0P and Cu0Cd acceptors

    The importance of unresolved biases in twentieth-century sea-surface temperature observations

    Get PDF
    Biases in sea-surface temperature observations lead to larger uncertainties in our understanding of mid-to-late 20th century climate variability than previously thought. A new analysis of sea-surface temperature (SST) observations indicates notable uncertainty in observed decadal climate variability in the second half of the 20th century, particularly during the decades following World War II. The uncertainties are revealed by exploring SST data binned separately for the two predominant measurement types: “engine-room intake” (ERI) and “bucket” measurements. ERI measurements indicate large decreases in global-mean SSTs from 1950 to 1975, whereas “bucket” measurements indicate increases in SST over this period before bias adjustments are applied but decreases after they are applied. The trends in the bias adjustments applied to the “bucket” data are larger than the global-mean trends during the period 1950-1975, and thus the global-mean trends during this period derive largely from the adjustments themselves. This is critical, since the adjustments are based on incomplete information about the underlying measurement methods, and are thus subject to considerable uncertainty. The uncertainty in decadal-scale variability is particularly pronounced over the North Pacific, where the sign of low-frequency variability through the 1950s-1970s is different for each measurement type. The uncertainty highlighted here has important – but in our view widely overlooked – implications for the interpretation of observed decadal climate variability over both the Pacific and Atlantic basins during the mid-to-late 20th century
    corecore