6 research outputs found

    Periodic behaviors in the observed vertical column abundances of atmospheric hydroxyl

    Get PDF
    The data base for the vertical column abundance of atmospheric hydroxyl (OH) for Fritz Peak Observatory, Colorado (40 N, 105 W), now extends from 1976 through 1988 and is composed of 8849 independent data sets, averaging about 15 percent uncertainty and 20-minute time resolution each. The dominant solar zenith angle (chi) dependence of the OH abundance is characterized by an empirical curve, N(88), which has been updated from N(82) to include all valid data from 1980 through 1988. The chi-dependence of the OH abundance has been, to a first order, removed from the data base by a normalization procedure in which each data point is divided by the N(88,AM) value for the corresponding solar zenith angle. The resulting normalized OH values may then be examined for other systematic effects, particularly for periodic variations. Observations have also been made at Boca Raton, Florida (26 N, 80 W) and at Truk, Federated States of Micronesia (7 N, 152 E). These data bases are much less extensive and, as such, are less amenable to analysis for periodic behaviors. Some comparisons with the Colorado data may be made, however

    Validation of 10-year SAO OMI Ozone Profile (PROFOZ) Product Using Ozonesonde Observations

    Get PDF
    We validate the Ozone Monitoring Instrument (OMI) ozone-profile (PROFOZ) product from October 2004 through December 2014 retrieved by the Smithsonian Astrophysical Observatory (SAO) algorithm against ozonesonde observations. We also evaluate the effects of OMI Row anomaly (RA) on the retrieval by dividing the data set into before and after the occurrence of serious OMI RA, i.e., pre-RA (2004-2008) and post-RA (2009-2014). The retrieval shows good agreement with ozonesondes in the tropics and mid-latitudes and for pressure ~50 hPa after applying OMI averaging kernels to ozonesonde data. The MBs of the stratospheric ozone column (SOC) are within 2% with SDs of ~50 hPa. The SOC MBs increase up to 3% with SDs as great as 6% and the TOC SDs increase up to 30%. The comparison generally degrades at larger solarzenith angles (SZA) due to weaker signals and additional sources of error, leading to worse performance at high latitudes and during the mid-latitude winter. Agreement also degrades with increasing cloudiness for pressure > ~100 hPa and varies with cross-track position, especially with large MBs and SDs at extreme off-nadir positions. In the tropics and mid-latitudes, the post-RA comparison is considerably worse with larger SDs reaching 2% in the stratosphere and 8% in the troposphere and up to 6% in TOC. There are systematic differences that vary with latitude compared to the pre-RA comparison. The retrieval comparison demonstrates good long-term stability during the pre-RA period, but exhibits a statistically significant trend of 0.14-0.7%/year for pressure < ~ 80 hPa, 0.7 DU/year in SOC and -0.33 DU/year in TOC during the post-RA period. The spatiotemporal variation of retrieval performance suggests the need to improve OMI’s radiometric calibration especially during the post-RA period to maintain the long-term stability and reduce the latitude/season/SZA and cross-track dependence of retrieval quality.Astronom

    Validation of 10-year 1 SAO OMI ozone profile (PROFOZ) product using ozonesonde observations [Discussion paper]

    No full text
    It is essential to understand the data quality of 10+ year OMI ozone product and impacts of the “Row Anomaly (RA)”. We validate the OMI ozone-profile (PROFOZ) product from Oct. 2004 to Dec. 2014 against ozonesonde observations globally. Generally, OMI has good agreement with ozonesondes. The spatiotemporal variation of retrieval performance suggests the need to improve OMI’s radiometric calibration especially during the post-RA period to maintain the long-term stability

    Validation of 10-year 1 SAO OMI Ozone Profile (PROFOZ) Product Using Ozonesonde Observations

    No full text
    We validate the Ozone Monitoring Instrument (OMI) ozone-profile (PROFOZ) product from October 2004 through December 2014 retrieved by the Smithsonian Astrophysical Observatory (SAO) algorithm against ozonesonde observations. We also evaluate the effects of OMI Row anomaly (RA) on the retrieval by dividing the data set into before and after the occurrence of serious OMI RA, i.e., pre-RA (2004-2008) and post-RA (2009-2014). The retrieval shows good agreement with ozonesondes in the tropics and mid-latitudes and for pressure ~50 hPa after applying OMI averaging kernels to ozonesonde data. The MBs of the stratospheric ozone column (SOC) are within 2% with SDs of ~50 hPa. The SOC MBs increase up to 3% with SDs as great as 6% and the TOC SDs increase up to 30%. The comparison generally degrades at larger solar zenith angles (SZA) due to weaker signals and additional sources of error, leading to worse performance at high latitudes and during the mid-latitude winter. Agreement also degrades with increasing cloudiness for pressure > ~100 hPa and varies with cross-track position, especially with large MBs and SDs at extreme off-nadir positions. In the tropics and mid-latitudes, the post-RA comparison is considerably worse with larger SDs reaching 2% in the stratosphere and 8% in the troposphere and up to 6% in TOC. There are systematic differences that vary with latitude compared to the pre-RA comparison. The retrieval comparison demonstrates good long-term stability during the pre-RA period, but exhibits a statistically significant trend of 0.14-0.7%/year for pressure < ~ 80 hPa, 0.7 DU/year in SOC and -0.33 DU/year in TOC during the post-RA period. The spatiotemporal variation of retrieval performance suggests the need to improve OMI’s radiometric calibration especially during the post-RA period to maintain the long-term stability and reduce the latitude/season/SZA and cross-track dependence of retrieval quality
    corecore