2,387 research outputs found

    Spectrometric test of a linear array sensor

    Get PDF
    A spectroradiometer which measures spectral reflectivities and irradiance in discrete spectral channels was tested to determine the accuracy of its wavelength calibration. This sensor is a primary tool in the remote sensing investigations conducted on biomass at NASA's Goddard Space Flight Center. Measurements have been collected on crop and forest plants both in the laboratory and field with this radiometer to develop crop identification and plant stress remote sensing techniques. Wavelength calibration is essential for use in referencing the study measurements with those of other investigations and satellite remote sensor data sets. This calibration determines a wavelength vs channel address conversion which was found to have an RMS deviation of approximately half a channel, or 1.5 nm in the range from 360 to 1050 nm. A comparison of these results with those of another test showed an average difference of approximately 4 nm, sufficiently accurate for most investigative work

    Technological society and institutionalised conflict management.

    Get PDF

    Modification of Cellular DNA by Synthetic Aziridinomitosenes

    Get PDF
    Two synthetic aziridinomitosenes (AZMs), Me-AZM and H-AZM, structurally related to mitomycin C (MC) were evaluated for their anticancer activity against six cancer cell lines (HeLa, Jurkat, T47D, HepG2, HL-60, and HuT-78) and tested for their DNA-modifying abilities in Jurkat cells. Cytotoxicity assays showed that Me-AZM is up to 72-fold and 520-fold more potent than MC and H-AZM, respectively. Me-AZM also demonstrated increased DNA modification over MC and H-AZM in alkaline COMET and Hoechst fluorescence assays that measured crosslinks in cellular DNA. Me-AZM and H-AZM treatment of Jurkat cells was found to sponsor significant DNA-protein crosslinks using a K-SDS assay. The results clearly indicate that the AZM C6/C7 substitution pattern plays an important role in drug activity and supports both DNA-DNA and DNA-protein adduct formation as mechanisms for inducing cytotoxic effects

    High-density integration of ultrabright OLEDs on a miniaturized needle-shaped CMOS backplane

    Get PDF
    This work was supported in part by the Defense Advanced Research Projects Agency (DARPA) under Contract N6600117C4012, by the National Institutes of Health under Grant U01NS090596, and by the Leverhulme Trust (RPG-2017-231). C.K.M. acknowledges funding from the European Commission through a Marie Skłodowska Curie individual fellowship (101029807). M.C.G. acknowledges funding from the Alexander von Humboldt Stiftung (Humboldt-Professorship). We thank Aaron Naden for the FIB/STEM measurements (Engineering and Physical Sciences Research Council under grant numbers EP/L017008/1, EP/R023751/1 and EP/T019298/1).Direct deposition of organic light-emitting diodes (OLEDs) on silicon-based complementary metal–oxide–semiconductor (CMOS) chips has enabled self-emissive microdisplays with high resolution and fill-factor. Emerging applications of OLEDs in augmented and virtual reality (AR/VR) displays and in biomedical applications, e.g., as brain implants for cell-specific light delivery in optogenetics, require light intensities orders of magnitude above those found in traditional displays. Further requirements often include a microscopic device footprint, a specific shape and ultrastable passivation, e.g., to ensure biocompatibility and minimal invasiveness of OLED-based implants. In this work, up to 1024 ultrabright, microscopic OLEDs are deposited directly on needle-shaped CMOS chips. Transmission electron microscopy and energy-dispersive X-ray spectroscopy are performed on the foundry-provided aluminum contact pads of the CMOS chips to guide a systematic optimization of the contacts. Plasma treatment and implementation of silver interlayers lead to ohmic contact conditions and thus facilitate direct vacuum deposition of orange- and blue-emitting OLED stacks leading to micrometer-sized pixels on the chips. The electronics in each needle allow each pixel to switch individually. The OLED pixels generate a mean optical power density of 0.25 mW mm−2, corresponding to >40 000 cd m−2, well above the requirement for daylight AR applications and optogenetic single-unit activation in the brain.Publisher PDFPeer reviewe

    Concussion-reporting behavior in rugby: A national survey of rugby union players in the United States

    Get PDF
    Background: Rugby is the fastest growing team sport in the United States for male and female athletes. It is a contact/collision sport with an injury risk profile that includes concussions. Purpose: To examine the prevalence of concussions in male and female rugby players in the United States and to characterize behaviors around reporting concussions that could be a target for prevention and treatment efforts. Study Design: Cross-sectional study; Level of evidence, 3. Methods: An online survey distributed to active members on the USA Rugby membership list was used to examine self-reported concussions in male and female athletes. Concussion-reporting behaviors and return to play after a concussion were also explored. Statistical analysis was used to compare male with female athletes and report differences, with years of experience as a dependent variable. Results: The proportion of athletes with a history of at least 1 concussion was 61.9% in all respondents. Of those who reported a concussion, 50.8% reported the concussion during the game or practice in which it occurred, and 57.6% reported at least 1 concussion to a qualified medical provider. Overall, 27.7% of participants who reported ≥1 rugby-related concussion in our survey noted that at least 1 of these concussions was not formally reported. The most commonly cited reasons for not reporting a concussion included not thinking that it was a serious injury, not knowing that it was a concussion at the time, and not wanting to be pulled out of the game or practice. Additionally, 61.0% of athletes did not engage in recommended return-to-play protocols after their most recent rugby-related concussion. Conclusion: US rugby union athletes may not report concussions to medical personnel or follow return-to-play protocols guided by medical advice. This could result from a lack of education on concussion recognition and the risks associated with continued play after a concussion as well as limited access to health care. Further education efforts focusing on the identification of concussions, removal from play, and return-to-play protocols are necessary in the US rugby union population

    Optogenetic stimulation probes with single-neuron resolution based on organic LEDs monolithically integrated on CMOS

    Get PDF
    Funding: This work was supported in part by the Defense Advanced Research Projects Agency (DARPA) under contract N6600117C4012, by the National Institutes of Health under grant U01NS090596, by the Leverhulme Trust (RPG-2017-231) and by the Alexander von Humboldt Stiftung (Humboldt-Professorship to M.C.G.). This work was performed in part at the Columbia Nano Initiative cleanroom facility, at the CUNY Advanced Science Research Center Nanofabrication Facility, and at the Singh Center for Nanotechnology, part of the National Nanotechnology Coordinated Infrastructure Program, which is supported by the National Science Foundation grant NNCI-2025608. C.-K.M. acknowledges funding from the European Commission through a Marie-Skłodowska Curie Individual Fellowship (101029807).The use of optogenetic stimulation to evoke neuronal activity in targeted neural populations—enabled by opsins with fast kinetics, high sensitivity and cell-type and subcellular specificity—is a powerful tool in neuroscience. However, to interface with the opsins, deep-brain light delivery systems are required that match the scale of the spatial and temporal control offered by the molecular actuators. Here we show that organic light-emitting diodes can be combined with complementary metal–oxide–semiconductor technology to create bright, actively multiplexed emissive elements. We create implantable shanks in which 1,024 individually addressable organic light-emitting diode pixels with a 24.5 µm pitch are integrated with active complementary metal–oxide–semiconductor drive and control circuitry. This integration is enabled by controlled electrode conditioning, monolithic deposition of the organic light-emitting diodes and optimized thin-film encapsulation. The resulting probes can be used to access brain regions as deep as 5 mm and selectively activate individual neurons with millisecond-level precision in mice.Publisher PDFPeer reviewe

    COMPARISON OF TRIP-STRIP/IMPINGEMENT/DIMPLE COOLING CONCEPTS AT HIGH REYNOLDS NUMBERS

    Get PDF
    ABSTRACT Modern industrial combustor liners employ various cooling schemes such as, but not limited to, impingement arrays, trip-strips, and film cooling. With an increasing demand for a higher turbine inlet temperatures and lower emissions, there is less air available to cool the combustor liner. To ensure the required liner durability without compromising engine performance more innovative cooling schemes are required. In the present work, three different cooling concepts, i.e., strip-strips, jet array impingement and dimples, operating at unusually high flow conditions were investigated. There is very little data available in the open literature for the aforementioned cooling schemes in the indicated Reynolds Number range (Re Dh >60,000). The wall flow friction characteristics as well as the local heat transfer were measured. The heat transfer coefficients were obtained using a transient liquid crystal technique. The test configurations consisted of a 90° trip-strip surface (only one side turbulated), a fixed staggered array with varying impingement hole sizes, and a fixed staggered dimple pattern. For the Reynolds numbers investigated (26,000< Re Dh <360,000), the jet-impingement cooling provided the highest average heat transfer enhancement followed by the trip-strip channel, and then by the dimpled channel. In terms of the overall thermal performance, the dimpled channel tends to stand out as the most effective cooling scheme. This is consistent with findings from other investigators at lower Reynolds numbers

    Plin2 Inhibits Cellular Glucose Uptake through Interactions with SNAP23, a SNARE Complex Protein

    Get PDF
    Although a link between excess lipid storage and aberrant glucose metabolism has been recognized for many years, little is known what role lipid storage droplets and associated proteins such as Plin2 play in managing cellular glucose levels. To address this issue, the influence of Plin2 on glucose uptake was examined using 2-NBD-Glucose and [(3)H]-2-deoxyglucose to show that insulin-mediated glucose uptake was decreased 1.7- and 1.8-fold, respectively in L cell fibroblasts overexpressing Plin2. Conversely, suppression of Plin2 levels by RNAi-mediated knockdown increased 2-NBD-Glucose uptake several fold in transfected L cells and differentiated 3T3-L1 cells. The effect of Plin2 expression on proteins involved in glucose uptake and transport was also examined. Expression of the SNARE protein SNAP23 was increased 1.6-fold while levels of syntaxin-5 were decreased 1.7-fold in Plin2 overexpression cells with no significant changes observed in lipid droplet associated proteins Plin1 or FSP27 or with the insulin receptor, GLUT1, or VAMP4. FRET experiments revealed a close proximity of Plin2 to SNAP23 on lipid droplets to within an intramolecular distance of 51 Ã…. The extent of targeting of SNAP23 to lipid droplets was determined by co-localization and co-immunoprecipitation experiments to show increased partitioning of SNAP23 to lipid droplets when Plin2 was overexpressed. Taken together, these results suggest that Plin2 inhibits glucose uptake by interacting with, and regulating cellular targeting of SNAP23 to lipid droplets. In summary, the current study for the first time provides direct evidence for the role of Plin2 in mediating cellular glucose uptake

    Joint estimation of crown of thorns (Acanthaster planci) densities on the Great Barrier Reef

    Get PDF
    Crown-of-thorns starfish (CoTS; Acanthaster spp.) are an outbreaking pest among many Indo-Pacific coral reefs that cause substantial ecological and economic damage. Despite ongoing CoTS research, there remain critical gaps in observing CoTS populations and accurately estimating their numbers, greatly limiting understanding of the causes and sources of CoTS outbreaks. Here we address two of these gaps by (1) estimating the detectability of adult CoTS on typical underwater visual count (UVC) surveys using covariates and (2) inter-calibrating multiple data sources to estimate CoTS densities within the Cairns sector of the Great Barrier Reef (GBR). We find that, on average, CoTS detectability is high at 0.82 [0.77, 0.87] (median highest posterior density (HPD) and [95% uncertainty intervals]), with CoTS disc width having the greatest influence on detection. Integrating this information with coincident surveys from alternative sampling programs, we estimate CoTS densities in the Cairns sector of the GBR averaged 44 [41, 48] adults per hectare in 2014
    • …
    corecore