54 research outputs found
Scientific instruments for climate change adaptation: estimating and optimizing the efficiency of ecosystem service provision
Adaptation to the consequences of climate change can depend on efficient use of ecosystem services (ES), i.e. a better use of natural services through management of the way in which they are delivered to society. While much discussion focuses on reducing consumption and increasing production of services, a lack of scientific instruments has so far prevented other mechanisms to improve ecosystem services efficiency from being addressed systematically as an adaptation strategy. This paper describes new methodologies for assessing ecosystem services and quantifying their values to humans, highlighting the role of ecosystem service flow analysis in optimizing the efficiency of ES provision.Ecosystem services, flow analysis, Bayesian modeling, spatial analysis, Environmental Economics and Policy, Q01, Q54, Q55, Q57,
From theoretical to actual ecosystem services: Mapping beneficiaries and spatial flows in ecosystem service assessments
Ecosystem services mapping and modeling has focused more on supply than demand, until recently. Whereas the potential provision of economic benefits from ecosystems to people is often quantified through ecological production functions, the use of and demand for ecosystem services has received less attention, as have the spatial flows of services from ecosystems to people. However, new modeling approaches that map and quantify service-specific sources (ecosystem capacity to provide a service), sinks (biophysical or anthropogenic features that deplete or alter service flows), users (user locations and level of demand), and spatial flows can provide a more complete understanding of ecosystem services. Through a case study in Puget Sound, Washington State, USA, we quantify and differentiate between the theoretical or in situ provision of services, i.e., ecosystems\u27 capacity to supply services, and their actual provision when accounting for the location of beneficiaries and the spatial connections that mediate service flows between people and ecosystems. Our analysis includes five ecosystem services: carbon sequestration and storage, riverine flood regulation, sediment regulation for reservoirs, open space proximity, and scenic viewsheds. Each ecosystem service is characterized by different beneficiary groups and means of service flow. Using the ARtificial Intelligence for Ecosystem Services (ARIES) methodology we map service supply, demand, and flow, extending on simpler approaches used by past studies to map service provision and use. With the exception of the carbon sequestration service, regions that actually provided services to people, i.e., connected to beneficiaries via flow paths, amounted to 16-66% of those theoretically capable of supplying services, i.e., all ecosystems across the landscape. These results offer a more complete understanding of the spatial dynamics of ecosystem services and their effects, and may provide a sounder basis for economic valuation and policy applications than studies that consider only theoretical service provision and/or use. © 2014 by the author(s)
A methodology for adaptable and robust ecosystem services assessment
Ecosystem Services (ES) are an established conceptual framework for attributing value to the benefits that nature provides to humans. As the promise of robust ES-driven management is put to the test, shortcomings in our ability to accurately measure, map, and value ES have surfaced. On the research side, mainstream methods for ES assessment still fall short of addressing the complex, multi-scale biophysical and socioeconomic dynamics inherent in ES provision, flow, and use. On the practitioner side, application of methods remains onerous due to data and model parameterization requirements. Further, it is increasingly clear that the dominant one model fits all paradigm is often ill-suited to address the diversity of real-world management situations that exist across the broad spectrum of coupled human-natural systems. This article introduces an integrated ES modeling methodology, named ARIES (ARtificial Intelligence for Ecosystem Services), which aims to introduce improvements on these fronts. To improve conceptual detail and representation of ES dynamics, it adopts a uniform conceptualization of ES that gives equal emphasis to their production, flow and use by society, while keeping model complexity low enough to enable rapid and inexpensive assessment in many contexts and for multiple services. To improve fit to diverse application contexts, the methodology is assisted by model integration technologies that allow assembly of customized models from a growing model base. By using computer learning and reasoning, model structure may be specialized for each application context without requiring costly expertise. In this article we discuss the founding principles of ARIES - both its innovative aspects for ES science and as an example of a new strategy to support more accurate decision making in diverse application contexts
The global environmental agenda urgently needs a semantic web of knowledge
Progress in key social-ecological challenges of the global environmental agenda (e.g., climate change, biodiversity conservation, Sustainable Development Goals) is hampered by a lack of integration and synthesis of existing scientific evidence. Facing a fast-increasing volume of data, information remains compartmentalized to pre-defined scales and fields, rarely building its way up to collective knowledge. Today's distributed corpus of human intelligence, including the scientific publication system, cannot be exploited with the efficiency needed to meet current evidence synthesis challenges; computer-based intelligence could assist this task. Artificial Intelligence (AI)-based approaches underlain by semantics and machine reasoning offer a constructive way forward, but depend on greater understanding of these technologies by the science and policy communities and coordination of their use. By labelling web-based scientific information to become readable by both humans and computers, machines can search, organize, reuse, combine and synthesize information quickly and in novel ways. Modern open science infrastructure-i.e., public data and model repositories-is a useful starting point, but without shared semantics and common standards for machine actionable data and models, our collective ability to build, grow, and share a collective knowledge base will remain limited. The application of semantic and machine reasoning technologies by a broad community of scientists and decision makers will favour open synthesis to contribute and reuse knowledge and apply it toward decision making
Towards globally customizable ecosystem service models
Scientists, stakeholders and decision makers face trade-offs between adopting simple or complex approaches when modeling ecosystem services (ES). Complex approaches may be time- and data-intensive, making them more challenging to implement and difficult to scale, but can produce more accurate and locally specific results. In contrast, simple approaches allow for faster assessments but may sacrifice accuracy and credibility. The ARtificial Intelligence for Ecosystem Services (ARIES) modeling platform has endeavored to provide a spectrum of simple to complex ES models that are readily accessible to a broad range of users. In this paper, we describe a series of five âTier 1â ES models that users can run anywhere in the world with no user input, while offering the option to easily customize models with context-specific data and parameters. This approach enables rapid ES quantification, as models are automatically adapted to the application context. We provide examples of customized ES assessments at three locations on different continents and demonstrate the use of ARIES' spatial multi-criteria analysis module, which enables spatial prioritization of ES for different beneficiary groups. The models described here use publicly available global- and continental-scale data as defaults. Advanced users can modify data input requirements, model parameters or entire model structures to capitalize on high-resolution data and context-specific model formulations. Data and methods contributed by the research community become part of a growing knowledge base, enabling faster and better ES assessment for users worldwide. By engaging with the ES modeling community to further develop and customize these models based on user needs, spatiotemporal contexts, and scale(s) of analysis, we aim to cover the full arc from simple to complex assessments, minimizing the additional cost to the user when increased complexity and accuracy are needed
Machine learning for ecosystem services
Recent developments in machine learning have expanded data-driven modelling (DDM) capabilities, allowing artificial intelligence to infer the behaviour of a system by computing and exploiting correlations between observed variables within it. Machine learning algorithms may enable the use of increasingly available âbig dataâ and assist applying ecosystem service models across scales, analysing and predicting the flows of these services to disaggregated beneficiaries. We use the Weka and ARIES software to produce two examples of DDM: firewood use in South Africa and biodiversity value in Sicily, respectively. Our South African example demonstrates that DDM (64â91% accuracy) can identify the areas where firewood use is within the top quartile with comparable accuracy as conventional modelling techniques (54â77% accuracy). The Sicilian example highlights how DDM can be made more accessible to decision makers, who show both capacity and willingness to engage with uncertainty information. Uncertainty estimates, produced as part of the DDM process, allow decision makers to determine what level of uncertainty is acceptable to them and to use their own expertise for potentially contentious decisions. We conclude that DDM has a clear role to play when modelling ecosystem services, helping produce interdisciplinary models and holistic solutions to complex socio-ecological issues
Water-Use Data in the United States: Challenges and Future Directions
In the United States, greater attention has been given to developing water supplies and quantifying available waters than determining who uses water, how much they withdraw and consume, and how and where water use occurs. As water supplies are stressed due to an increasingly variable climate, changing land-use, and growing water needs, greater consideration of the demand side of the water balance equation is essential. Data about the spatial and temporal aspects of water use for different purposes are now critical to long-term water supply planning and resource management. We detail the current state of water-use data, the major stakeholders involved in their collection and applications, and the challenges in obtaining high-quality nationally consistent data applicable to a range of scales and purposes. Opportunities to improve access, use, and sharing of water-use data are outlined. We cast a vision for a world-class national water-use data product that is accessible, timely, and spatially detailed. Our vision will leverage the strengths of existing local, state, and federal agencies to facilitate rapid and informed decision-making, modeling, and science for water resources. To inform future decision-making regarding water supplies and uses, we must coordinate efforts to substantially improve our capacity to collect, model, and disseminate water-use data
Reimagining the potential of Earth observations for ecosystem service assessments
The benefits nature provides to people, called ecosystem services, are increasingly recognized and accounted for in assessments of infrastructure development, agricultural management, conservation prioritization, and sustainable sourcing. These assessments are often limited by data, however, a gap with tremendous potential to be filled through Earth observations (EO), which produce a variety of data across spatial and temporal extents and resolutions. Despite widespread recognition of this potential, in practice few ecosystem service studies use EO. Here, we identify challenges and opportunities to using EO in ecosystem service modeling and assessment. Some challenges are technical, related to data awareness, processing, and access. These challenges require systematic investment in model platforms and data management. Other challenges are more conceptual but still systemic; they are byproducts of the structure of existing ecosystem service models and addressing them requires scientific investment in solutions and tools applicable to a wide range of models and approaches. We also highlight new ways in which EO can be leveraged for ecosystem service assessments, identifying promising new areas of research. More widespread use of EO for ecosystem service assessment will only be achieved if all of these types of challenges are addressed. This will require non-traditional funding and partnering opportunities from private and public agencies to promote data exploration, sharing, and archiving. Investing in this integration will be reflected in better and more accurate ecosystem service assessments worldwide
Ecosystem Services Valuation to Support Decisionmaking on Public Lands: A Case Study of the San Pedro River Watershed, Arizona
This report details the findings of the Bureau of Land Management (BLM)âUnited States Geological Survey (USGS) Ecosystem Services Valuation Pilot Study. This project evaluated alternative methods and tools that quantify and value ecosystem services, and it assessed the toolsâ readiness for use in BLMâs decisionmaking process. We tested these tools on the San Pedro River watershed in northern Sonora, Mexico and southeast Arizona
- âŠ