12 research outputs found

    X-Ray Diffuse Scattering

    Get PDF
    Contains research summary and reports on two research projects.Joint Services Electronics Program (Contract DAAL03-86-K-0002)Joint Services Electronics Program (Contract DAAL03-89-C-0001

    X-Ray Diffuse Scattering

    Get PDF
    Contains introduction and reports on three research projects.Joint Services Electronics Program DAAL03-89-C-000

    Ecologically driven ultrastructural and hydrodynamic designs in stomatopod cuticles

    Get PDF
    Ecological pressures and varied feeding behaviors in a multitude of organisms have necessitated the drive for adaptation. One such change is seen in the feeding appendages of stomatopods, a group of highly predatory marine crustaceans. Stomatopods include "spearers," who ambush and snare soft bodied prey, and "smashers," who bludgeon hard-shelled prey with a heavily mineralized club. The regional substructural complexity of the stomatopod dactyl club from the smashing predator Odontodactylus scyllarus represents a model system in the study of impact tolerant biominerals. The club consists of a highly mineralized impact region, a characteristic Bouligand architecture (common to arthropods), and a unique section of the club, the striated region, composed of highly aligned sheets of mineralized fibers. Detailed ultrastructural investigations of the striated region within O. scyllarus and a related species of spearing stomatopod, Lysiosquillina maculate show consistent organization of mineral and organic, but distinct differences in macro-scale architecture. Evidence is provided for the function and substructural exaptation of the striated region, which facilitated redeployment of a raptorial feeding appendage as a biological hammer. Moreover, given the need to accelerate underwater and "grab" or "smash" their prey, the spearer and smasher appendages are specifically designed with a significantly reduced drag force.Facultad de Ingenierí

    Data publication: In-situ GISAXS observation of ion-induced nanoscale pattern formation on crystalline Ge(001) in the reverse epitaxy regime

    No full text
    experimental raw data: in-situ Grazing Incidence Small Angle X-ray Scattering (GISAXS), ex-situ Atomic Force Microscopy (AFM); simulated raw data: surface topography (RIDO

    Role of Heterointerface in Lithium-Induced Phase Transition in <i>T</i><sub>d</sub>‑WTe<sub>2</sub> Nanoflakes

    No full text
    A new polytype of WTe2 with a bandgap has been recently discovered through the intercalation of lithium into the van der Waals gaps of Td-WTe2. Here, we report the effects of reduced thicknesses and heterointerfaces on the intercalation-induced phase transition in WTe2. Using in situ Raman spectroscopy during the electrochemical lithiation of WTe2 flakes as a function of flake thickness, we observe that additional electrochemical energy is required for the phase transition of WTe2 from the Td phase to the new lithiated Td′ phase, going from 0.8 V of the applied electrochemical voltage for a thick flake to 0.5 V and 0.3 V for 7- and 5-layered samples, respectively. We ascribe this suppression of the phase transition to the interfacial interaction between the nanoflake and SiO2/Si substrate, which plays an increasing role as the sample thickness is reduced. The suppressed kinetics of the phase transition can be mitigated by placing the WTe2 flake on a hexagonal boron nitride (hBN) flake, which facilitates the release of the in-plane strain induced by the phase transition. Our study underscores the significance of interfacial effects in modulating phase transitions in two-dimensional (2D) materials, suggesting heterogeneous transition pathways, as well as interfacial engineering to control these phase transitions

    Dirac nodal arc in 1T-VSe2

    No full text
    Abstract Transition metal dichalcogenides exhibit many fascinating properties including superconductivity, magnetic orders, and charge density wave. The combination of these features with a non-trivial band topology opens the possibility of additional exotic states such as Majorana fermions and quantum anomalous Hall effect. Here, we report on photon-energy and polarization dependent spin-resolved angle-resolved photoemission spectroscopy experiments on single crystal 1T-VSe2, revealing an unexpected band inversion and emergent Dirac nodal arc with spin-momentum locking. Density functional theory calculations suggest a surface lattice strain could be the driving mechanism for the topologically nontrivial electronic structure of 1T-VSe2
    corecore