2,723 research outputs found

    ICAN sensitivity analysis

    Get PDF
    A computer program called Integrated Composite Analyzer (ICAN) was used to predict the properties of high-temperature polymer matrix composites. ICAN is a collection of NASA Lewis Research Center-developed computer codes designed to carry out analysis of multilayered fiber composites. The material properties used as input to the program were those of the thermoset polyimide resin PMR-15 and the carbon fiber Celion 6000. The sensitivity of the predicted composite properties to variations in the resin and fiber properties was examined. In addition, the predicted results were compared with experimental data. In most cases, the effect of changes in resin and fiber properties on composite properties was reasonable. However, the variations in the composite strengths with the moisture content of the PMR-15 resin were inconsistent. The ICAN-predicted composite moduli agreed fairly well with experimental values, but the predicted composite strengths were generally lower than experimental values

    A Search for γ\gamma Doradus-Type Variable Stars in the Hyades

    Full text link
    γ\gamma Doradus stars are photometrically variable early F-type stars on or just above the main sequence in the Hertzsprung-Russell Diagram. They vary by as much as 0.1 mag on time scales an order of magnitude slower than the fundamental radial pulsation period. These brightness variations are presumably due to non-radial gravity-mode pulsations. We obtained high precision VV-band photometry of 8 F0 to F5 stars in the Hyades (BS 1319, BS 1354, BS 1385, BS 1408, BS 1430, BS 1432, BS 1459, and BS 1472) and found that none of them showed strong evidence of γ\gamma Dor-type variability. Since γ\gamma Dor-type candidates are found in the Pleiades and in NGC 2516 (having ages of 78 and 137 Myr, repectively) but apparently not in the Hyades (age >> 600 Myr), we hypothesize that the γ\gamma Dor phenomenon is a characteristic of relatively young F stars. Two of the stars investigated showed marginal evidence of low-amplitude variability. The ±\pm3 mmag variability of the F5 star BS 1319 is most likely due to rotational modulation of star spots, though it is not impossible that it is a γ\gamma Dor star. Another F5 star BS 1459 (ΔV=±2\Delta V = \pm 2 mmag) has a possible period similar to δ\delta Scuti stars, but no firm conclusions should be made concerning its behavior unless and until its variability is confirmed.Comment: 8 pages, Latex, uses MN.STY, 6 figures, available via Fax or regular pos

    Long-Term Isothermal Aging Effects on Carbon Fabric-Reinforced PMR-15 Composites: Compression Strength

    Get PDF
    A study was conducted to determine the effects of long-term isothermal thermo-oxidative aging on the compressive properties of T-650-35 fabric reinforced PMR-15 composites. The temperatures that were studied were 204, 260, 288, 316, and 343 C. Specimens of different geometries were evaluated. Cut edge-to-surface ratios of 0.03 to 0.89 were fabricated and aged. Aging times extended to a period in excess of 15,000 hours for the lower temperature runs. The unaged and aged specimens were tested in compression in accordance with ASTM D-695. Both thin and thick (plasma) specimens were tested. Three specimens were tested at each time/temperature/geometry condition. The failure modes appeared to be initiated by fiber kinking with longitudinal, interlaminar splitting. In general, it appears that the thermo-oxidative degradation of the compression strength of the composite material may occur by both thermal (time-dependent) and oxidative (weight-loss) mechanisms. Both mechanisms appear to be specimen-thickness dependent

    Evolutionary aspects of urea utilization by fungi

    Get PDF
    The higher fungi exhibit a dichotomy with regard to urea utilization. The hemiascomycetes use urea amidolyase (DUR1,2), whereas all other higher fungi use the nickel-containing urease. Urea amidolyase is an energy-dependent biotincontaining enzyme. It likely arose before the Euascomycete/Hemiascomycete divergence c. 350 million years ago by insertion of an unknown gene into one copy of a duplicated methylcrotonyl CoA carboxylase (MccA). The dichotomy between urease and urea amidolyase coincides precisely with that for the Ni/Co transporter (Nic1p), which is present in the higher fungi that use urease and is absent in those that do not. We suggest that the selective advantage for urea amidolyase is that it allowed the hemiascomycetes to jettison all Ni2+- and Co2+- dependent metabolisms and thus to have two fewer transition metals whose concentrations need to be regulated. Also, the absence of MccA in the hemiascomycetes coincides with and may explain their production of fusel alcohols

    Alcohol consumption and leukocyte telomere length.

    Get PDF
    The relationship between alcohol consumption and mortality generally exhibits a U-shaped curve. The longevity observed with moderate alcohol consumption may be explained by other confounding factors, and, if such a relationship is present, the mechanism is not well understood. Indeed, the optimal amount of alcohol consumption for health has yet to be determined. Leukocyte telomere length is an emerging quantifiable marker of biological age and health, and a shorter telomere length is a predictor of increased mortality. Because leukocyte telomere length is a quantifiable and objectively measurable biomarker of aging, we sought to identify the amount of alcohol consumption associated with the longest telomere length and least telomere length attrition. Among over 2,000 participants from two distinct cohort studies, we found no pattern of alcohol consumption that was associated with longer telomere length or less telomere length attrition over time. Binge drinking may reduce telomere length. Using telomere length as a marker of age and health, these data fail to demonstrate any benefits of alcohol consumption, even when consumed in moderation

    \u3ci\u3eCandida albicans ISW2 Regulates\u3c/i\u3e Chlamydospore Suspensor Cell Formation and Virulence \u3ci\u3eIn Vivo\u3c/i\u3e in a Mouse Model of Disseminated Candidiasis

    Get PDF
    Formation of chlamydospores by Candida albicans was an established medical diagnostic test to confirm candidiasis before the molecular era. However, the functional role and pathological relevance of this in vitro morphological transition to pathogenesis in vivo remain unclear. We compared the physical properties of in vitro-induced chlamydospores with those of large C. albicans cells purified by density gradient centrifugation from Candida infected mouse kidneys. The morphological and physical properties of these cells in kidneys of mice infected intravenously with wild type C. albicans confirmed that chlamydospores can form in infected kidneys. A previously reported chlamydospore-null Δisw2/ Δisw2 mutant was used to investigate its role in virulence and chlamydospore induction. Virulence of the Δisw2/Δisw2 mutant strain was reduced 3.4-fold compared to wild type C. albicans or the ISW2 reconstituted strain. Altered host inflammatory reactions to the null mutant further indicate that ISW2 is a virulence factor in C. albicans. ISW2 deletion abolished chlamydospore formation within infected mouse kidneys, whereas the reconstituted strain restored chlamydospore formation in kidneys. Under chlamydospore inducing conditions in vitro, deletion of ISW2 significantly delayed chlamydospore formation, and those late induced chlamydospores lacked associated suspensor cells while attaching laterally to hyphae via novel spore-hypha septa. Our findings establish the induction of chlamydospores by C. albicans during mouse kidney colonization. Our results indicate that ISW2 is not strictly required for chlamydospores formation but is necessary for suspensor cell formation. The importance of ISW2 in chlamydospore morphogenesis and virulence may lead to additional insights into morphological differentiation and pathogenesis of C. albicans in the host microenvironment

    \u3ci\u3eCandida albicans ISW2 Regulates\u3c/i\u3e Chlamydospore Suspensor Cell Formation and Virulence \u3ci\u3eIn Vivo\u3c/i\u3e in a Mouse Model of Disseminated Candidiasis

    Get PDF
    Formation of chlamydospores by Candida albicans was an established medical diagnostic test to confirm candidiasis before the molecular era. However, the functional role and pathological relevance of this in vitro morphological transition to pathogenesis in vivo remain unclear. We compared the physical properties of in vitro-induced chlamydospores with those of large C. albicans cells purified by density gradient centrifugation from Candida infected mouse kidneys. The morphological and physical properties of these cells in kidneys of mice infected intravenously with wild type C. albicans confirmed that chlamydospores can form in infected kidneys. A previously reported chlamydospore-null Δisw2/ Δisw2 mutant was used to investigate its role in virulence and chlamydospore induction. Virulence of the Δisw2/Δisw2 mutant strain was reduced 3.4-fold compared to wild type C. albicans or the ISW2 reconstituted strain. Altered host inflammatory reactions to the null mutant further indicate that ISW2 is a virulence factor in C. albicans. ISW2 deletion abolished chlamydospore formation within infected mouse kidneys, whereas the reconstituted strain restored chlamydospore formation in kidneys. Under chlamydospore inducing conditions in vitro, deletion of ISW2 significantly delayed chlamydospore formation, and those late induced chlamydospores lacked associated suspensor cells while attaching laterally to hyphae via novel spore-hypha septa. Our findings establish the induction of chlamydospores by C. albicans during mouse kidney colonization. Our results indicate that ISW2 is not strictly required for chlamydospores formation but is necessary for suspensor cell formation. The importance of ISW2 in chlamydospore morphogenesis and virulence may lead to additional insights into morphological differentiation and pathogenesis of C. albicans in the host microenvironment

    Microbial Community of Saline, Alkaline Lakes in the Nebraska Sandhills Based on 16S rRNA Gene Amplicon Sequence Data

    Get PDF
    The Nebraska Sandhills region contains over 1,500 geochemically diverse interdunal lakes, some of which are potassium rich, alkaline, and hypersaline. Here, we report 16S rRNA amplicon pyrosequencing data on the water and sediment microbial communities of eight alkaline lakes in the Sandhills of western Nebraska

    Differential Antigen Presentation Regulates the Changing Patterns of CD8+ T Cell Immunodominance in Primary and Secondary Influenza Virus Infections

    Get PDF
    The specificity of CD8+ T cell responses can vary dramatically between primary and secondary infections. For example, NP366–374/Db- and PA224–233/Db-specific CD8+ T cells respond in approximately equal numbers to a primary influenza virus infection in C57BL/6 mice, whereas NP366–374/Db-specific CD8+ T cells dominate the secondary response. To investigate the mechanisms underlying this changing pattern of immunodominance, we analyzed the role of antigen presentation in regulating the specificity of the T cell response. The data show that both dendritic and nondendritic cells are able to present the NP366–374/Db epitope, whereas only dendritic cells effectively present the PA224–233/Db epitope after influenza virus infection, both in vitro and in vivo. This difference in epitope expression favored the activation and expansion of NP366–374/Db-specific CD8+ memory T cells during secondary infection. The data also show that the immune response to influenza virus infection may involve T cells specific for epitopes, such as PA224–233/Db, that are poorly expressed at the site of infection. In this regard, vaccination with the PA224–233 peptide actually had a detrimental effect on the clearance of a subsequent influenza virus infection. Thus, differential antigen presentation impacts both the specificity of the T cell response and the efficacy of peptide-based vaccination strategies
    • …
    corecore