38 research outputs found

    The effects of water deprivation on the body weight, food intake and water intake of the albino rat

    Get PDF
    A survey of the literature reveals a substantial body of research concerned with the effects of food and/or water deprivation on body weight, food and water intake, and activity of the albino rat. This research is important because many psychological experiments, particularly those studies in the field of animal learning in which motivation is induced by the use of a nutritional maintenance schedule, require some measurement of performance on consecutive days during which the rats are in a motivational state

    Observations on anodal polarization of cutaneous nerve

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/33005/1/0000389.pd

    Calibration between Eustatic Estimates from Backstripping and Oxygen Isotopic Records for the Oligocene

    Get PDF
    Eustatic estimates from the backstripping of Oligocene sections are compared quantitatively with δ18O data. Each of the nine Oligocene δ18O events (maxima) identified in previous studies correlates with a stratigraphically determined sea-level lowstand. Oxygen isotopic records from planktonic foraminifers from western equatorial Atlantic Ocean Drilling Program (ODP) Site 929 indicate an isotopic increase of 0.16‰ per 10 m decrease in the depth of the ocean (apparent sea level, ASL). Amplitudes of ASL change also correlate with moderate- and high-resolution benthic for a min i fer al δ18O records from ODP Sites 803 (western tropical Pacific) and 929 and from Deep Sea Drilling Project (DSDP) Site 522 (South Atlantic Ocean), with an isotopic change of 0.22‰ per 10 m of ASL change (r2 = 0.807 and 0.960, respectively), and with records from ODP Site 689 (Southern Ocean; 0.13‰ per 10 m of ASL change; r2 = 0.704). This correlation suggests that Southern Ocean deep-water temperature changes were smaller than tropical sea-surface temperature changes between million year–scale glacials and interglacials. It also suggests that the deep-sea Southern Ocean records may provide the best means to calibrate sea level to oxygen isotopes

    Cenozoic Global Sea Level, Sequences, and the New Jersey Transect: Results from Coastal Plain and Continental Slope Drilling

    Get PDF
    The New Jersey Sea Level Transect was designed to evaluate the relationships among global sea level (eustatic) change, unconformity-bounded sequences, and variations in subsidence, sediment supply, and climate on a passive continental margin. By sampling and dating Cenozoic strata from coastal plain and continental slope locations, we show that sequence boundaries correlate (within ±0.5 myr) regionally (onshore-offshore) and interregionally (New Jersey-Alabama-Bahamas), implicating a global cause. Sequence boundaries correlate with δ18O increases for at least the past 42 myr, consistent with an ice volume (glacioeustatic) control, although a causal relationship is not required because of uncertainties in ages and correlations. Evidence for a causal connection is provided by preliminary Miocene data from slope Site 904 that directly link δ18O increases with sequence boundaries. We conclude that variation in the size of ice sheets has been a primary control on the formation of sequence boundaries since ∼42 Ma. We speculate that prior to this, the growth and decay of small ice sheets caused small-amplitude sea level changes (less than 20 m) in this supposedly ice-free world because Eocene sequence boundaries also appear to correlate with minor δ18O increases. Subsidence estimates (backstripping) indicate amplitudes of short-term (million-year scale) lowerings that are consistent with estimates derived from δ18O studies (25–50 m in the Oligocene-middle Miocene and 10–20 m in the Eocene) and a long-term lowering of 150–200 m over the past 65 myr, consistent with estimates derived from volume changes on mid-ocean ridges. Although our results are consistent with the general number and timing of Paleocene to middle Miocene sequences published by workers at Exxon Production Research Company, our estimates of sea level amplitudes are substantially lower than theirs. Lithofacies patterns within sequences follow repetitive, predictable patterns: (1) coastal plain sequences consist of basal transgressive sands overlain by regressive highstand silts and quartz sands; and (2) although slope lithofacies variations are subdued, reworked sediments constitute lowstand deposits, causing the strongest, most extensive seismic reflections. Despite a primary eustatic control on sequence boundaries, New Jersey sequences were also influenced by changes in tectonics, sediment supply, and climate. During the early to middle Eocene, low siliciclastic and high pelagic input associated with warm climates resulted in widespread carbonate deposition and thin sequences. Late middle Eocene and earliest Oligocene cooling events curtailed carbonate deposition in the coastal plain and slope, respectively, resulting in a switch to siliciclastic sedimentation. In onshore areas, Oligocene sequences are thin owing to low siliciclastic and pelagic input, and their distribution is patchy, reflecting migration or progradation of depocenters; in contrast, Miocene onshore sequences are thicker, reflecting increased sediment supply, and they are more complete downdip owing to simple tectonics. We conclude that the New Jersey margin provides a natural laboratory for unraveling complex interactions of eustasy, tectonics, changes in sediment supply, and climate change

    Plasma exosome microRNAs are indicative of breast cancer

    Get PDF
    Table containing the clinicopathological features of the patient-derived xenograft (PDX) mice used in this study. (DOCX 13 kb

    The Phanerozoic Record of Global Sea-Level Change

    Get PDF
    We review Phanerozoic sea-level changes [543 million years ago (Ma) to the present] on various time scales and present a new sea-level record for the past 100 million years (My). Long-term sea level peaked at 100 ± 50 meters during the Cretaceous, implying that ocean-crust production rates were much lower than previously inferred. Sea level mirrors oxygen isotope variations, reflecting ice-volume change on the 104- to 106-year scale, but a link between oxygen isotope and sea level on the 107-year scale must be due to temperature changes that we attribute to tectonically controlled carbon dioxide variations. Sea-level change has influenced phytoplankton evolution, ocean chemistry, and the loci of carbonate, organic carbon, and siliciclastic sediment burial. Over the past 100 My, sea-level changes reflect global climate evolution from a time of ephemeral Antarctic ice sheets (100 to 33 Ma), through a time of large ice sheets primarily in Antarctica (33 to 2.5 Ma), to a world with large Antarctic and large, variable Northern Hemisphere ice sheets (2.5 Ma to the present)

    Integrated Late Eocene-Oligocene Stratigraphy of the Alabama Coastal Plain: Correlation of Hiatuses and Stratal Surfaces to Glacioeustatic Lowerings

    Get PDF
    We integrated strontium and oxygen isotopic, biostratigraphic, and magnetostratigraphic studies of two upper Eocene-Oligocene boreholes drilled near Bay Minette and St. Stephens Quarry (SSQ), Alabama. Continuous coring provided fresh, unweathered material for magnetostratigraphic studies, minimizing problems reported from nearby outcrops. Difficulties with each technique were encountered because of diagenesis, absence of marker fossils, and the presence of unconformities; however, by integrating results from isotopic stratigraphy, biostratigraphy, and magnetostratigraphy, we correlated these relatively shallow-water deposits to the geomagnetic polarity time scale (GPTS). At the SSQ borehole, the upper Eocene to lower Oligocene section is apparently complete within our stratigraphic resolution (0.2-0.5 m.y.), allowing us to estimate the ages of several stratal surfaces. Late Eocene Sr isotope age estimates are as expected at the SSQ borehole, but Oligocene ages are ~1 m.y. older than expected due to diagenesis. At the Bay Minette borehole, a latest Eocene-earliest Oligocene and a late early Oligocene hiatus were detected. We correlate these two hiatuses and stratal surfaces at SSQ with global δ^18O increases inferred to represent glacioeustatic lowerings and with evidence for hiatuses on other continental margins: (1) a distinct disconformity at the base of the Chickasawhay Limestone at both boreholes and a hiatus at Bay Minette correlates with a global δ^18O increase; we revise the age of this surface (equivalent to the TB 1.1 sequence boundary) making it ~2 m.y. older than previously reported; and (2) a surface at the top of the Shubuta Member (lowermost Oligocene) has been interpreted both as a condensed section and a disconformity; this surface at SSQ and a hiatus at Bay Minette correlate with a sharp global δ^18O increase and with hiatuses on the New Jersey and Irish margins. The timing of the hiatuses and stratal surfaces correlates with the inflection of the δ^18O increases and not with the maximum values, supporting models that indicate that unconformities form during the maximum rates of sea level fall
    corecore