1,283 research outputs found
Investigation of the Jahn-Teller Transition in TiF3 using Density Functional Theory
We use first principles density functional theory to calculate electronic and
magnetic properties of TiF3 using the full potential linearized augmented plane
wave method. The LDA approximation predicts a fully saturated ferromagnetic
metal and finds degenerate energy minima for high and low symmetry structures.
The experimentally observed Jahn-Teller phase transition at Tc=370K can not be
driven by the electron-phonon interaction alone, which is usually described
accurately by LDA.
Electron correlations beyond LDA are essential to lift the degeneracy of the
singly occupied Ti t2g orbital. Although the on-site Coulomb correlations are
important, the direction of the t2g-level splitting is determined by the
dipole-dipole interactions. The LDA+U functional predicts an aniferromagnetic
insulator with an orbitally ordered ground state. The input parameters U=8.1 eV
and J=0.9 eV for the Ti 3d orbital were found by varying the total charge on
the TiF ion using the molecular NRLMOL code. We estimate the
Heisenberg exchange constant for spin-1/2 on a cubic lattice to be
approximately 24 K. The symmetry lowering energy in LDA+U is about 900 K per
TiF3 formula unit.Comment: 7 pages, 9 figures, to appear in Phys. Rev.
A Hybrid Artificial Bee Colony Algorithm for Graph 3-Coloring
The Artificial Bee Colony (ABC) is the name of an optimization algorithm that
was inspired by the intelligent behavior of a honey bee swarm. It is widely
recognized as a quick, reliable, and efficient methods for solving optimization
problems. This paper proposes a hybrid ABC (HABC) algorithm for graph
3-coloring, which is a well-known discrete optimization problem. The results of
HABC are compared with results of the well-known graph coloring algorithms of
today, i.e. the Tabucol and Hybrid Evolutionary algorithm (HEA) and results of
the traditional evolutionary algorithm with SAW method (EA-SAW). Extensive
experimentations has shown that the HABC matched the competitive results of the
best graph coloring algorithms, and did better than the traditional heuristics
EA-SAW when solving equi-partite, flat, and random generated medium-sized
graphs
Franck-Condon Effect in Central Spin System
We study the quantum transitions of a central spin surrounded by a
collective-spin environment. It is found that the influence of the
environmental spins on the absorption spectrum of the central spin can be
explained with the analog of the Franck-Condon (FC) effect in conventional
electron-phonon interaction system. Here, the collective spins of the
environment behave as the vibrational mode, which makes the electron to be
transitioned mainly with the so-called "vertical transitions" in the
conventional FC effect. The "vertical transition" for the central spin in the
spin environment manifests as, the certain collective spin states of the
environment is favored, which corresponds to the minimal change in the average
of the total spin angular momentum.Comment: 8 pages, 8 figure
Heavy Quarks on Anisotropic Lattices: The Charmonium Spectrum
We present results for the mass spectrum of mesons simulated on
anisotropic lattices where the temporal spacing is only half of the
spatial spacing . The lattice QCD action is the Wilson gauge action plus
the clover-improved Wilson fermion action. The two clover coefficients on an
anisotropic lattice are estimated using mean links in Landau gauge. The bare
velocity of light has been tuned to keep the anisotropic, heavy-quark
Wilson action relativistic. Local meson operators and three box sources are
used in obtaining clear statistics for the lowest lying and first excited
charmonium states of , , , and . The
continuum limit is discussed by extrapolating from quenched simulations at four
lattice spacings in the range 0.1 - 0.3 fm. Results are compared with the
observed values in nature and other lattice approaches. Finite volume effects
and dispersion relations are checked.Comment: 36 pages, 6 figur
Dirac-Born-Infeld Action on the Tachyon Kink and Vortex
The tachyon effective field theory describing the dynamics of a non-BPS
D-brane in superstring theory has an infinitely thin but finite tension kink
solution describing a codimension one BPS D-brane. We study the world-volume
theory of massless modes on the kink, and show that the world volume action has
precisely the Dirac-Born-Infeld (DBI) form without any higher derivative
corrections. We generalize this to a vortex solution in the effective field
theory on a brane-antibrane pair. As in the case of the kink, the vortex is
infinitely thin, has finite energy density, and the world-volume action on the
vortex is again given exactly by the DBI action on a BPS D-brane. We also
discuss the coupling of fermions and restoration of supersymmetry and
-symmetry on the world-volume of the kink. Absence of higher derivative
corrections to the DBI action on the soliton implies that all such corrections
are related to higher derivative corrections to the original effective action
on the world-volume of a non-BPS D-brane or brane-antibrane pair.Comment: LaTeX file, 34 pages; references and other minor comments adde
Influence of shear flow on vesicles near a wall: a numerical study
We describe the dynamics of three-dimensional fluid vesicles in steady shear
flow in the vicinity of a wall. This is analyzed numerically at low Reynolds
numbers using a boundary element method. The area-incompressible vesicle
exhibits bending elasticity. Forces due to adhesion or gravity oppose the
hydrodynamic lift force driving the vesicle away from a wall. We investigate
three cases. First, a neutrally buoyant vesicle is placed in the vicinity of a
wall which acts only as a geometrical constraint. We find that the lift
velocity is linearly proportional to shear rate and decreases with increasing
distance between the vesicle and the wall. Second, with a vesicle filled with a
denser fluid, we find a stationary hovering state. We present an estimate of
the viscous lift force which seems to agree with recent experiments of Lorz et
al. [Europhys. Lett., vol. 51, 468 (2000)]. Third, if the wall exerts an
additional adhesive force, we investigate the dynamical unbinding transition
which occurs at an adhesion strength linearly proportional to the shear rate.Comment: 17 pages (incl. 10 figures), RevTeX (figures in PostScript
Confinement Effects in Antiferromagnets
Phase equilibrium in confined Ising antiferromagnets was studied as a
function of the coupling (v) and a magnetic field (h) at the surfaces, in the
presence of an external field H. The ground state properties were calculated
exactly for symmetric boundary conditions and nearest-neighbor interactions,
and a full zero-temperature phase diagram in the plane v-h was obtained for
films with symmetry-preserving surface orientations. The ground-state analysis
was extended to the H-T plane using a cluster-variation free energy. The study
of the finite-T properties (as a function of v and h) reveals the close
interdependence between the surface and finite-size effects and, together with
the ground-state phase diagram, provides an integral picture of the confinement
in anisotropic antiferromagnets with surfaces that preserve the symmetry of the
order parameter.Comment: 10 pages, 8 figures, Accepted in Phys. Rev.
Chemostratigraphy of Neoproterozoic carbonates: implications for 'blind dating'
The delta C-13(carb) and Sr-87/Sr-86 secular variations in Neoproteozoic seawater have been used for the purpose of 'isotope stratigraphy' but there are a number of problems that can preclude its routine use. In particular, it cannot be used with confidence for 'blind dating'. The compilation of isotopic data on carbonate rocks reveals a high level of inconsistency between various carbon isotope age curves constructed for Neoproteozoic seawater, caused by a relatively high frequency of both global and local delta C-13(carb) fluctuations combined with few reliable age determinations. Further complication is caused by the unresolved problem as to whether two or four glaciations, and associated negative delta C-13(carb) excursions, can be reliably documented. Carbon isotope stratigraphy cannot be used alone for geological correlation and 'blind dating'. Strontium isotope stratigraphy is a more reliable and precise tool for stratigraphic correlations and indirect age determinations. Combining strontium and carbon isotope stratigraphy, several discrete ages within the 590-544 Myr interval, and two age-groups at 660-610 and 740-690 Myr can be resolved
Semiparametric theory and empirical processes in causal inference
In this paper we review important aspects of semiparametric theory and
empirical processes that arise in causal inference problems. We begin with a
brief introduction to the general problem of causal inference, and go on to
discuss estimation and inference for causal effects under semiparametric
models, which allow parts of the data-generating process to be unrestricted if
they are not of particular interest (i.e., nuisance functions). These models
are very useful in causal problems because the outcome process is often complex
and difficult to model, and there may only be information available about the
treatment process (at best). Semiparametric theory gives a framework for
benchmarking efficiency and constructing estimators in such settings. In the
second part of the paper we discuss empirical process theory, which provides
powerful tools for understanding the asymptotic behavior of semiparametric
estimators that depend on flexible nonparametric estimators of nuisance
functions. These tools are crucial for incorporating machine learning and other
modern methods into causal inference analyses. We conclude by examining related
extensions and future directions for work in semiparametric causal inference
Sequential design of computer experiments for the estimation of a probability of failure
This paper deals with the problem of estimating the volume of the excursion
set of a function above a given threshold,
under a probability measure on that is assumed to be known. In
the industrial world, this corresponds to the problem of estimating a
probability of failure of a system. When only an expensive-to-simulate model of
the system is available, the budget for simulations is usually severely limited
and therefore classical Monte Carlo methods ought to be avoided. One of the
main contributions of this article is to derive SUR (stepwise uncertainty
reduction) strategies from a Bayesian-theoretic formulation of the problem of
estimating a probability of failure. These sequential strategies use a Gaussian
process model of and aim at performing evaluations of as efficiently as
possible to infer the value of the probability of failure. We compare these
strategies to other strategies also based on a Gaussian process model for
estimating a probability of failure.Comment: This is an author-generated postprint version. The published version
is available at http://www.springerlink.co
- …
