5,462 research outputs found

    Defensive Take-over Procedures Since the Williams Act

    Get PDF

    Five steps in the evolution from protoplanetary to debris disk

    Get PDF
    The protoplanetary disks of Herbig Ae stars eventually dissipate leaving a tenuous debris disk comprised of planetesimals and dust, as well as possibly gas and planets. This paper uses the properties of 10-20Myr A star debris disks to consider the protoplanetary to debris disk transition. The physical distinction between these two classes is argued to rest on the presence of primordial gas in sufficient quantities to dominate the motion of small dust grains (not the secondary nature of the dust or its level of stirring). This motivates an observational classification based on the dust spectrum, empirically defined so that A star debris disks require fractional excesses <3 at 12um and <2000 at 70um. We also propose a hypothesis to test, that the main sequence planet/planetesimal structures are already in place (but obscured) during the protoplanetary disk phase. This may be only weakly true if planetary architectures change until frozen during disk dispersal, or completely false if planets and planetesimals form during disk dispersal. Five steps in the transition are discussed: (i) carving an inner hole to form a transition disk; (ii) depletion of mm-sized dust in outer disk, noting the importance of determining whether this mass ends up in planetesimals or is collisionally depleted; (iii) final clearing of inner regions, noting that many mechanisms replenish moderate hot dust levels at later phases, and likely also operate in protoplanetary disks; (iv) disappearence of gas, noting recent discoveries of primordial and secondary gas in debris disks that highlight our ignorance and its impending enlightenment by ALMA; (v) formation of ring-like planetesimal structures, noting these are shaped by interactions with planets, and that the location of planetesimals in protoplanetary disks may be unrelated to the dust concentrations therein that are set by gas interactions.The authors are grateful for support from the European Union through ERC grant number 279973.This is the author accepted manuscript. The final version is available via Springer at http://link.springer.com/article/10.1007/s10509-015-2315-6/fulltext.html

    Shaping HR8799's outer dust belt with an unseen planet

    Get PDF
    HR8799 is a benchmark system for direct imaging studies. It hosts two debris belts, which lie internally and externally to four giant planets. This paper considers how the four known planets and a possible fifth planet, interact with the external population of debris through N-body simulations. We find that when only the known planets are included, the inner edge of the outer belt predicted by our simulations is much closer to the outermost planet than recent ALMA observations suggest. We subsequently include a fifth planet in our simulations with a range of masses and semi-major axes, which is external to the outermost known planet. We find that a fifth planet with a mass and semi-major axis of 0.1MJ\mathrm{M_J} and 138au predicts an outer belt that agrees well with ALMA observations, whilst remaining stable for the lifetime of HR8799 and lying below current direct imaging detection thresholds. We also consider whether inward scattering of material from the outer belt can input a significant amount of mass into the inner belt. We find that for the current age of HR8799, only ∼\sim1\% of the mass loss rate of the inner disk can be replenished by inward scattering. However we find that the higher rate of inward scattering during the first ∼\sim10Myr of HR8799 would be expected to cause warm dust emission at a level similar to that currently observed, which may provide an explanation for such bright emission in other systems at ∼10\sim10Myr ages.Comment: 16 pages, 13 figures. Accepted for publication in MNRA

    Recruiting patients with advanced malignant and non-malignant disease: lessons learned from a palliative care RCT.

    Get PDF
    RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    Robust Estimation for Linear Panel Data Models

    Full text link
    In different fields of applications including, but not limited to, behavioral, environmental, medical sciences and econometrics, the use of panel data regression models has become increasingly popular as a general framework for making meaningful statistical inferences. However, when the ordinary least squares (OLS) method is used to estimate the model parameters, presence of outliers may significantly alter the adequacy of such models by producing biased and inefficient estimates. In this work we propose a new, weighted likelihood based robust estimation procedure for linear panel data models with fixed and random effects. The finite sample performances of the proposed estimators have been illustrated through an extensive simulation study as well as with an application to blood pressure data set. Our thorough study demonstrates that the proposed estimators show significantly better performances over the traditional methods in the presence of outliers and produce competitive results to the OLS based estimates when no outliers are present in the data set
    • …
    corecore