187 research outputs found
Modulation of human corticospinal excitability by paired associative stimulation
Paired Associative Stimulation (PAS) has come to prominence as a potential therapeutic intervention for the treatment of brain injury/disease, and as an experimental method with which to investigate Hebbian principles of neural plasticity in humans. Prototypically, a single electrical stimulus is directed to a peripheral nerve in advance of transcranial magnetic stimulation (TMS) delivered to the contralateral primary motor cortex (M1). Repeated pairing of the stimuli (i.e., association) over an extended period may increase or decrease the excitability of corticospinal projections from M1, in manner that depends on the interstimulus interval (ISI). It has been suggested that these effects represent a form of associative long-term potentiation (LTP) and depression (LTD) that bears resemblance to spike-timing dependent plasticity (STDP) as it has been elaborated in animal models. With a large body of empirical evidence having emerged since the cardinal features of PAS were first described, and in light of the variations from the original protocols that have been implemented, it is opportune to consider whether the phenomenology of PAS remains consistent with the characteristic features that were initially disclosed. This assessment necessarily has bearing upon interpretation of the effects of PAS in relation to the specific cellular pathways that are putatively engaged, including those that adhere to the rules of STDP. The balance of evidence suggests that the mechanisms that contribute to the LTP- and LTD-type responses to PAS differ depending on the precise nature of the induction protocol that is used. In addition to emphasizing the requirement for additional explanatory models, in the present analysis we highlight the key features of the PAS phenomenology that require interpretation
Kinematic Components of the Reach-to-Target Movement After Stroke for Focused Rehabilitation Interventions:Systematic Review and Meta-Analysis
Background: Better upper limb recovery after stroke could be achieved through tailoring rehabilitation interventions directly at movement deficits. Aim: to identify potential; targets for therapy by synthesizing findings of differences in kinematics and muscle activity between stroke survivors and healthy adults performing reach-to-target tasks. Methods: A systematic review with identification of studies, data extraction, and potential risk of bias was completed independently by two reviewers. Online databases were searched from their inception to November 2017 to find studies of reach-to-target in people-with-stroke and healthy adults. Potential risk-of-bias was assessed using the Down’s and Black Tool. Synthesis was undertaken via: (a) meta-analysis of kinematic characteristics utilizing the standardized mean difference (SMD) [95% confidence intervals]; and (b), narrative synthesis of muscle activation. Results: Forty-six studies met the review criteria but 14 had insufficient data for extraction. Consequently, 32 studies were included in the meta-analysis. Potential risk-of-bias was low for one study, unclear for 30, and high for one. Reach-to-target was investigated with 618 people-with-stroke and 429 healthy adults. The meta-analysis found, in all areas of workspace, that people-with-stroke had: greater movement times (seconds) e.g. SMD 2.57 [0.89, 4.25]; lower peak velocity (millimeters/second) e.g. SMD -1.76 [-2.29, -1.24]; greater trunk displacement (millimeters) e.g. SMD 1.42 [0.90, 1.93]; a more curved reach-path-ratio e.g. SMD 0.77 [0.32, 1.22] and reduced movement smoothness e.g. SMD 0.92 [0.32, 1.52]. In the ipsilateral and contralateral workspace, people-with-stroke exhibited: larger errors in target accuracy e.g. SMD 0.70 [0.39, 1.01]. In contralateral workspace, stroke survivors had: reduced elbow extension and shoulder flexion (degrees) e.g. elbow extension SMD -1.10 [-1.62, -0.58] and reduced shoulder flexion SMD -1.91 [-1.96, -0.42]. Narrative synthesis of muscle activation found that people-with-stroke, compared with healthy adults, exhibited: delayed muscle activation; reduced coherence between muscle pairs; and use of a greater percentage of muscle power. Conclusions: This first-ever meta-analysis of the kinematic differences between people with stroke and healthy adults performing reach-to-target found statistically significant differences for 21 of the 26 comparisons. The differences identified and values provided are potential foci for tailored rehabilitation interventions to improve upper limb recovery after stroke
Activation of MAPK signalling results in resistance to saracatinib (AZD0530) in ovarian cancer
SRC tyrosine kinase is frequently overexpressed and activated in late-stage, poor prognosis ovarian tumours, and preclinical studies have supported the use of targeted SRC inhibitors in the treatment of this disease. The SAPPROC trial investigated the addition of the SRC inhibitor saracatinib (AZD0530) to weekly paclitaxel for the treatment of platinum resistant ovarian cancer; however, this drug combination did not provide any benefit to progression free survival (PFS) of women with platinum resistant disease. In this study we aimed to identify mechanisms of resistance to SRC inhibitors in ovarian cancer cells. Using two complementary strategies; a targeted tumour suppressor gene siRNA screen, and a phospho-receptor tyrosine kinase array, we demonstrate that activation of MAPK signalling, via a reduction in NF1 (neurofibromin) expression or overexpression of HER2 and the insulin receptor, can drive resistance to AZD0530. Knockdown of NF1 in two ovarian cancer cell lines resulted in resistance to AZD0530, and was accompanied with activated MEK and ERK signalling. We also show that silencing of HER2 and the insulin receptor can partially resensitize AZD0530 resistant cells, which was associated with decreased phosphorylation of MEK and ERK. Furthermore, we demonstrate a synergistic effect of combining SRC and MEK inhibitors in both AZD0530 sensitive and resistant cells, and that MEK inhibition is sufficient to completely resensitize AZD0530 resistant cells. This work provides a preclinical rationale for the combination of SRC and MEK inhibitors in the treatment of ovarian cancer, and also highlights the need for biomarker driven patient selection for clinical trials
Challenges and opportunities for the future of Brain-Computer Interface in neurorehabilitation
Brain-computer interfaces (BCIs) provide a unique technological solution to circumvent the damaged motor system. For neurorehabilitation, the BCI can be used to translate neural signals associated with movement intentions into tangible feedback for the patient, when they are unable to generate functional movement themselves. Clinical interest in BCI is growing rapidly, as it would facilitate rehabilitation to commence earlier following brain damage and provides options for patients who are unable to partake in traditional physical therapy. However, substantial challenges with existing BCI implementations have prevented its widespread adoption. Recent advances in knowledge and technology provide opportunities to facilitate a change, provided that researchers and clinicians using BCI agree on standardisation of guidelines for protocols and shared efforts to uncover mechanisms. We propose that addressing the speed and effectiveness of learning BCI control are priorities for the field, which may be improved by multimodal or multi-stage approaches harnessing more sensitive neuroimaging technologies in the early learning stages, before transitioning to more practical, mobile implementations. Clarification of the neural mechanisms that give rise to improvement in motor function is an essential next step towards justifying clinical use of BCI. In particular, quantifying the unknown contribution of non-motor mechanisms to motor recovery calls for more stringent control conditions in experimental work. Here we provide a contemporary viewpoint on the factors impeding the scalability of BCI. Further, we provide a future outlook for optimal design of the technology to best exploit its unique potential, and best practices for research and reporting of findings
- …