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  Abstract
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Brain-Computer Interfaces (BCI) provide a unique technological solution to circumvent the damaged motor system. For
neurorehabilitation, the BCI can be used to translate neural signals associated with movement intentions into tangible feedback for
the patient, when they are unable to generate functional movement themselves. Clinical interest in BCI is growing rapidly, as it
would facilitate rehabilitation to commence earlier following brain damage and provides options for patients who are unable to
partake in traditional physical therapy. However, substantial challenges with existing BCI implementations have prevented its
widespread adoption. Recent advances in knowledge and technology provide opportunities to facilitate a change, provided that
researchers and clinicians using BCI agree on standardisation of guidelines for protocols and shared efforts to uncover mechanisms.
We propose that addressing the speed and effectiveness of learning BCI control are priorities for the field, which may be improved
by multimodal or multi-stage approaches harnessing more sensitive neuroimaging technologies in the early learning stages, before
transitioning to more practical, mobile implementations. Clarification of the neural mechanisms that give rise to improvement in
motor function is an essential next step towards justifying clinical use of BCI. In particular, quantifying the unknown contribution of
non-motor mechanisms to motor recovery calls for more stringent control conditions in experimental work.
Here we provide a contemporary viewpoint on the factors impeding the scalability of BCI. Further, we provide a future outlook
for optimal design of the technology to best exploit its unique potential, and best practices for research and reporting of findings.

   

  Contribution to the field

In the transition from laboratory research to clinical application, BCI for neurorehabilitation remains stuck in the lab despite
largely promising findings demonstrating a unique promise for restoring movement in brain injured patients. We take a
cautionary standpoint in this review of the state of the art, outlining reasons why current implementations of BCI for clinical
intents are fraught due to remaining technical, practical and theoretical issues. We critique each of the barriers to clinical
implementation of the technology, providing evidence-based solutions that would advance the state of this field and enable BCI to
become more widely used in clinical environments. We believe that this article will impact widely upon neuroscientists, engineers,
and clinicians alike, encouraging a consensus approach to promote quality research improving existing BCI implementations. We
hope this will pave the way for future work tackling remaining uncertainties regarding the neural mechanisms that underlay how
BCI can improve motor function. Ultimately, we hope that this article will accelerate efforts to bring BCI technology closer to the
bedside, so that brain injured patients can begin to benefit from what it has to offer.
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Abstract 
 
Brain-Computer Interfaces (BCI) provide a unique technological solution to circumvent the 

damaged motor system. For neurorehabilitation, the BCI can be used to translate neural signals 

associated with movement intentions into tangible feedback for the patient, when they are 

unable to generate functional movement themselves. Clinical interest in BCI is growing 

rapidly, as it would facilitate rehabilitation to commence earlier following brain damage and 

provides options for patients who are unable to partake in traditional physical therapy. 

However, substantial challenges with existing BCI implementations have prevented its 

widespread adoption. Recent advances in knowledge and technology provide opportunities to 

facilitate a change, provided that researchers and clinicians using BCI agree on standardisation 

of guidelines for protocols and shared efforts to uncover mechanisms.  
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We propose that addressing the speed and effectiveness of learning BCI control are 

priorities for the field, which may be improved by multimodal or multi-stage approaches 

harnessing more sensitive neuroimaging technologies in the early learning stages, before 

transitioning to more practical, mobile implementations. Clarification of the neural 

mechanisms that give rise to improvement in motor function is an essential next step towards 

justifying clinical use of BCI. In particular, quantifying the unknown contribution of non-motor 

mechanisms to motor recovery calls for more stringent control conditions in experimental 

work. 

Here we provide a contemporary viewpoint on the factors impeding the scalability of 

BCI. Further, we provide a future outlook for optimal design of the technology to best exploit 

its unique potential, and best practices for research and reporting of findings. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In review



 
 
 
 
 
 
Brain-Computer Interfaces (BCI) are hailed as a promising approach to overcome paralysis by 

translating brain signals from movement intentions into computerised or motorised feedback. 

They can be used to restore, replace, enhance, supplement or improve the natural output of the 

Central Nervous System (CNS), hence providing opportunities for motor rehabilitation from a 

range of conditions including spinal cord injury, traumatic brain injury and stroke. Following 

a stroke, approximately 77% of survivors are left with some degree of upper limb impairment 

(Lawrence et al., 2001; Nakayama et al., 1994), which is a key factor in preventing their 

engagement in normal activities of daily living and rendering them dependant on caregivers. 

Rehabilitation approaches that actively promote intensive and prolonged functional use of the 

paretic limb result in the largest gains in movement capability (Veerbeek et al., 2014). 

However, the gold standard approaches such as Constraint-Induced Movement Therapy 

(CIMT) require the patient to be capable of producing a sufficient level of functional movement 

in order to partake (Kwakkel et al., 2015). This prevents participation for those who are more 

severely impaired, or patients in the early weeks after brain injury who have not yet regained 

any function. With mounting recent evidence indicating that early intervention is crucial to 

harness the brain’s endogenous recovery processes (Stinear et al., 2020), therapies that can 

support the patient to generate appropriate functional patterns of brain activity and motor 

behaviour are greatly needed, during the period when they are unable to generate actual 

movement unassisted.  

 

Brain-Computer Interface for Neurorehabilitation; Basic premise and scope of the review 

 

Non-invasive Brain-Computer (and Brain-Machine) Interfaces provide an advanced 

technological solution, decoding brain signals directly from the scalp and translating them into 

movement of a virtual (on screen) or robotic effector. The effector can also be the user’s own 

limb, with electrical stimulation of muscles triggered by brain activity (Biasiucci et al., 2018; 

Bai et al., 2020). By closing the disrupted sensorimotor loop and providing tangible feedback, 

the patient learns to control the effector by motor imagery or movement intentions. Restoring 

relevant sensory feedback in relation to volitional movement attempts is believed to mobilise 

the fundamental mechanisms of motor learning (Mrachaz-Kersting et al., 2021). As such, they 
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can engage in mental practise of movement and keep their motor neural circuitry active, 

warding off the detrimental effects of limb non-use (Buxbaum et al., 2020), its associated white 

matter degeneration (Egorova et al., 2020), and promote use-dependant neuroplastic processes 

(Xing & Bai, 2020). Despite largely encouraging evidence suggesting that functional gains are 

produced exceeding those of standard care (Carvalho et al., 2019; Cervera et al., 2018; Coscia 

et al., 2019; Hatem et al., 2016; Kovyazina et al., 2019; López-Larraz et al., 2018; McConnell 

et al., 2017; Monge-Pereira et al., 2017; Raffin & Hummel, 2018; Remsik et al., 2016; Xing & 

Bai, 2020) substantial challenges with existing BCI implementations have prevented 

widespread adoption of the technology clinically (Baniqued et al., 2021). Here we provide a 

viewpoint on the practical, technical and mechanistic factors impeding the scalability of BCI 

into rehabilitative care packages. Further, we provide a future outlook for optimal design of the 

technology to best exploit its unique potential, and best practices for research and reporting of 

findings. 

 

Non-invasive BCI typically consists of three key components: A recorder, 

a decoder, and an effector. The recorder acquires brain signals from the scalp surface. The 

decoder analyses the recorded data, and the effector acts upon the information. In most cases 

the recorder is an electroencephalogram (EEG) detecting scalp electrical fluctuations 

associated with neuronal activity. In practise, any neural signal could be incorporated into a 

BCI, and implementations using Magnetoencephalography (MEG) (Buch et al., 2008; Foldes 

et al., 2015), functional Magnetic Resonance Imaging (fMRI) (Thibault et al., 2018) and 

functional Near Infrared Spectroscopy (fNIRS) (Soekadar et al., 2021) have also shown merit. 

The decoder is usually a program run on a computer, extracting desired aspects from the signal 

and conducting analyses in real-time. The analysis process may be as simple as measuring 

amplitude or frequency of ongoing brain activity (Wierzgała et al., 2018), or more complex 

decompositions of inter-regional connectivity or dynamic changes to spatial patterns of 

activation (Rathee et al., 2017). The effector of a BCI can take multiple forms. For 

neurorehabilitation, it may be a device that assists the patient to complete movements, such as 

a robotic limb (Khan et al., 2020; Soekadar et al., 2019; Tariq et al., 2018), a device that 

gives virtual (eg. on-screen) feedback to the participant to promote appropriate patterns of 

neural activity (de Castro-Cros et al., 2020; Kerous et al., 2018; Si-Mohammed et al., 2018), 

or a trigger to induce electrical stimulation of muscles in order to evoke movement (Bai et al., 

2020; Biasiucci et al., 2018). Even in the absence of evoked movement, electrical stimulation 
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can be used below motor threshold to provide continuous somatosensory feedback as the BCI 

signal (Corbet et al., 2018). 

 

 

 

Practical and technical challenges with clinical implementation of BCI 

 

For the BCI participant, learning to control the effector requires multiple practise sessions, 

viewing continuous feedback and learning by reward (Chavarriaga et al., 2017; Mrachacz-

Kersting et al., 2021). While passive/implicit learning is known to play a role in BCI control 

(Othmer, 2009), most human participants report developing and fine-tuning mental strategies 

throughout the course of training, usually involving imagination of movement (Khan et al., 

2020; Majid et al., 2015; Ruddy et al., 2018), or in the case of brain injured patients, attempts 

to make movement with the paretic limb (Bai et al., 2020; Balasubramanian et al., 2018; 

Blokland et al., 2012). Even for neurologically healthy participants, gaining effective control 

of an EEG-BCI takes many distinct sessions (Pfurtscheller et al., 2003; Stieger et al., 

2021). Without seeing tangible results within the first training sessions, it is likely that patients 

loose motivation to continue investing effort into trying to control the BCI. Another factor 

known to influence learning is the large variation in individual capability for motor imagery, 

contributing to the fact that 10-30% (Allison & Neuper, 2010; Lotte & Jeunet, 2015; Vidaurre 

& Blankertz, 2010) of users never achieve control over the BCI; a phenomenon historically 

referred to as BCI illiteracy but more recently coined BCI inefficiency (Thompson, 2019).  For 

BCI to serve as a useful therapeutic tool for neurorehabilitation, solutions that allow users to 

achieve control within a shorter time frame, and that are effective across a wider range of motor 

imagery capabilities, are needed to secure the future of this technology.  

 

As the neural signals used to drive effectors in an EEG-BCI are heavily influenced by 

ongoing mental state, the individual capacity to generate high quality mental imagery of 

movement dictates how easily detectable the relevant motor signals will be (Chavarriaga et al., 

2017; Marchesotti et al., 2016). Visual motor imagery, imagining observing yourself perform 

a movement, produces less pronounced  scalp-recorded signals than kinaesthetic motor 

imagery where the feeling of movement is effectively experienced (Neuper et al., 2005). 

Kinaesthetic motor imagery produces more easily detectible neural signals, at scalp locations 

overlaying motor cortical brain regions, and additionally modulates corticospinal excitability 
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measured via Motor Evoked Potentials (MEPs) in response to Transcranial Magnetic 

Stimulation (TMS)  (Stinear et al., 2006). However, about half of participants find it difficult 

to perform kinaesthetic motor imagery (Seiler et al., 2017), and those are the lowest performers 

on BCI (Vuckovic & Osuagwu, 2013). In some circumstances, it may be more beneficial to 

request that the patient make attempts to execute movements, rather than simply imagine 

movement (Bai et al., 2020; Balasubramanian et al., 2018; Blokland et al., 2012). For motor 

imagery-based BCI, multimodal or multi-phase BCI approaches (Fazli et al., 2012; Leamy et 

al., 2011) may lead to better accuracy, as different neuroimaging modalities may be more 

sensitive than EEG to detect very weak motor signals (albeit, technologies such as MRI, fNIRS, 

MEG or TMS may be less practical for long-term practise of BCI). As an example of a potential 

multi-phase approach, using a BCI based not upon scalp signals but upon muscle responses to 

TMS over the motor cortex, control of on-screen feedback using motor imagery could be 

achieved within just two training sessions (Ruddy et al., 2018). Whereas EEG scalp signals 

associated with movement intentions have poor spatial resolution, TMS can be used to target 

the motor cortical representations for specific muscles, selectively providing feedback of 

excitability of corticospinal pathways by measuring the amplitude of motor evoked potentials 

(MEPs) recorded at the muscle with electromyography (EMG).  When tested in a sample of 

stroke patients, most were capable of learning to increase the excitability of their corticospinal 

pathways with TMS neurofeedback, using only motor imagery (Liang et al., 2020). Using a 

multimodal approach it may be possible to train individuals to develop robust motor imagery 

strategies that optimally excite the targeted brain-muscle pathways using TMS neurofeedback 

within just two sessions, that then translates to better subsequent performance using 

functionally relevant signals on an EEG BCI that has better portability options. This hypothesis 

remains to be tested empirically, and it is notable to point out that the approach may only be 

applicable to patients who exhibit MEPs when stimulated. Approximately 13.4% (Stinear et 

al., 2017a) are deemed ‘MEP negative’, and those tend to be the most severely affected 

(Lundquist et al., 2021; Smith et al., 2019; Stinear et al., 2017b). Incorporating multimodality 

into BCI paradigms may also extend beyond the aforementioned suggestions concerning 

acquisition modalities. Multimodal feedback (ie. visual plus auditory or somatosensory) can 

also enhance the BCI learning experience (Sollfrank et al., 2016) and improve the quality of 

detectable brain signals (Sollfrank et al., 2015).   

 

In order for BCI for neurorehabilitation to become scalable, it needs to answer to the 

current requirements of healthcare providers. Namely, it should reduce rather than increase 
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burden and need for expert supervision, and instead place high quality rehabilitation into the 

hands and home of the patient in a cost effective manner. Even if initial control of the EEG 

BCI can be achieved more quickly using multimodal or multiphase approaches, longer term 

use over weeks or months would still be required alongside the patient’s standard rehabilitative 

care in order to promote functional upper limb improvement. Current implementations of EEG-

BCI are not well adapted for this purpose as they are cumbersome, require lengthy setup times 

with wet electrolyte-filled sensors, and a skilled operator to ensure sufficient signal quality, 

positioning of the headgear and execution of (often custom written and not user friendly) 

software. Recent technological advances in wireless, high impedance (dry electrode) EEG 

systems may enable better scalability. Using tablet-based software allowing real-time wireless 

streaming from a comfortable, wearable EEG cap with dry electrodes, signals of sufficient 

quality can be recorded even in home environments by elderly participants without assistance 

(McWilliams et al., 2021; Murphy et al., 2018a, 2018b, 2019). Advancing this new technology 

to additionally provide real-time feedback to the participant is a necessary next step towards 

home-based BCI that would allow extended training to be conducted in the weeks and months 

following brain injury. Further, it encourages the patient to feel in control of their own recovery 

process, rather than dependant on professionals or their caregivers. To date, existing 

implementations of wireless BCI for neurorehabilitation are at an early stage of technology 

readiness, with none reaching even small scale clinical trials (Baniqued et al., 2021). 

 

Challenges for elucidating mechanisms underlying BCI-induced functional improvements 

 

Advocating for clinical use of BCI is difficult when the specific mechanisms underlying 

functional improvements remain largely unknown. In order to make justifiable predictions 

regarding whether a patient is likely to benefit from BCI training, clinicians need to know what 

aspects of neural function are being targeted. The vast heterogeneity of available BCI methods 

further complicates attempts to elucidate mechanisms, as it is likely that different approaches 

target different aspects of neural circuitry to bring about functional improvements. A key issue 

to shed light upon across all types of BCI for neurorehabilitation is the potential contribution 

of unspecific (ie. non-motor) mechanisms for recovery. Ros et al., (2020) name four non-

specific factors that may contribute to overall BCI performance improvement. These include 

i) Factors unique to the neurofeedback environment (such as trainer-participant interaction in 

a neurotechnology context). ii) Factors that are common across interventions (such as benefits 

from engaging in a form of cognitive training, as well as psychosocial and placebo mechanisms 

Deleted:  

Formatted: Font colour: Red

Deleted: stroke

Deleted:  (Ros et al., 2020). These may include, for example, 
effects from sustained exertion of effort or engagement, 
feelings of empowerment or competence from achieving 
control of the BCI, or general improvements in mood or 
enjoyment resulting from engaging with a challenging 
gamified task. 

Deleted:  Ros et al., (2020)

Formatted: Font colour: Red

Deleted: (

Formatted: Font colour: Red

In review



related simply to participating in an experiment). iii) Repetition-related effects and iv) Natural 

effects occurring during the intervention period such as cognitive development (in 

children/adolescents) or age-related cognitive decline in elderly participants. This list is, 

however, not exhaustive. Additional to the aforementioned mechanisms, BCI performance may 

also be influenced by effects from sustained exertion of effort or engagement, feelings of 

empowerment or competence from achieving control of the BCI, or general improvements in 

mood or enjoyment resulting from engaging with a challenging gamified task. Even with 

seemingly adequate control groups, it may be challenging to match aspects such as effort, 

attention, enthusiasm and enjoyment between those receiving real neurofeedback and those 

receiving pseudofeedback which may be less intrinsically motivating. While it is encouraging 

that many studies are now including explicit measures to monitor training-induced changes to 

motor neural circuitry (ie. using neuroimaging), measures of the aforementioned unspecific 

effects are rarely included. Thus, their contribution cannot be evaluated with the currently 

available evidence.   

 

While the presence of unspecific BCI effects makes it more difficult to draw 

conclusions on how motor improvement for neurorehabilitation is achieved, it leaves open the 

intriguing possibility that although BCI training is conducted in the motor domain (ie. using 

motor imagery), beneficial effects may not be exclusive to the motor system. For instance, it is 

conceivable that increased effortful focus on the BCI task over a sustained training period may 

lead to a top-down, generalised improvement in brain health, materialising as motor gains 

(measured by most studies) but also gains in other (eg. cognitive) domains, which are not 

routinely quantified in BCI studies. This may materialise in the form of improved executive 

function, memory, attention or processing speed. Such general improvements may be brought 

about by, for example, increased blood flow to the brain, enhanced neurochemical environment 

promoting plasticity induction, or simply increased traffic in neural circuitry sustaining healthy 

activity-induced myelination processes. Generalised (cross-domain) transfer from trained to 

untrained tasks is greatest when the trained task requires a high degree of attentional focus and 

cognitive flexibility (Bavelier et al., 2018; Green & Bavelier, 2008). In this regard, it is 

debatable whether the motor imagery BCI is primarily a motor task, or a cognitive task, making 

direction of transfer difficult to ascertain. Future work may focus on whether motor 

improvements arise as a result of transfer from improved cognitive function, or whether a 

portion of the specific motor improvements transfer to improve cognitive function. To test this 

empirically, design of future BCI studies should routinely include cognitive performance 
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measurements alongside motor function tests, with measures taken at multiple timepoints 

throughout the learning process.   

 

A small proportion of Randomised Controlled Trials (RCTs) investigating BCI for 

neurorehabilitation have made efforts to measure and/or discuss potential mechanisms that give 

rise to functional improvements. Of these, candidate neural changes that co-occur with 

improvement in motor function include enhanced desynchronisation of sensorimotor rhythms 

(ie. neural oscillations in the alpha 8-12Hz and beta 13-30Hz frequency range) over scalp 

locations corresponding to motor cortex (Buch et al., 2008; Li et al., 2014; Ono et al., 2015; 

Prasad et al., 2010), changes in functional connectivity (Biasiucci et al., 2018; Pichiorri et al., 

2015; Varkuti et al., 2013; Wu et al., 2020), lateralisation of neural activity (Ramos-

Murguialday et al., 2013) or changes to white matter microstructure  (Hong et al., 2017; Song 

et al., 2015). Others have speculated that BCI works by mobilising the brain’s intrinsic learning 

mechanisms, adapting behaviour using classical and/or operant conditioning giving rise to 

neural adaptations (Mrachacz-Kersting et al., 2021).  To date, there has not been a 

comprehensive account that successfully resolves the aforementioned different perspectives 

into a holistic mechanistic model encompassing the electrophysiological, haemodynamic, and 

neurochemical components. Multimodal investigations measuring BCI-related neural changes 

simultaneously in each of these different modalities (eg. EEG, fMRI, MR-spectroscopy) are 

warranted in order to understand how the neural elements interact to bring about functional 

motor improvements. A point to note is that in none of the above studies were non-motor, 

unspecific mechanisms tested, so their contribution to improving motor function remains 

unknown. Transfer of benefits to the non-motor domain were also not quantified, leaving open 

the possibility that improvement in motor function may be a result of general brain health 

improvement.  

Elucidating mechanisms of functional improvement from BCI is further complicated 

by the fact that brain injured patients have widely heterogenous lesions, and lesion size and 

location do not predict functional outcomes in a straightforward manner (Umarova et al., 2021). 

Even in patients with similar extents of impairment, lesion location influences performance of 

BCI decoding of movement intentions (López-Larraz et al., 2017), and the scalp detected 

signals are qualitatively different when comparing cortical vs subcortical lesions in particular 

(López-Larraz et al., 2019). This poses challenges for a ‘one size fits all’ approach to BCI for 

neurorehabilitation and stresses the importance of adaptive algorithms that do not make rigid 

a-priori assumptions regarding location or characteristics of scalp detected signals, but rather 
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allow flexibility to detect idiosyncratic patterns of neural activity that could be used to drive 

the BCI in an individually tailored fashion.  

 
 

Outlook for future scalability and justification of BCI use clinically 

 

The field of BCI for neurorehabilitation has benefitted in recent years from collaborative efforts 

to standardise approaches using the best evidence-based technologies, and with 

recommendations for best practise in conducting research. For instance, the MT-BCI 

consortium is a multinational effort collecting the largest existing sample of BCI data across 9 

countries, with the objective to deepen understanding of learning mechanisms in mental-task 

based BCI (MT-BCI), improve efficiency and reliability of MT-BCI and make them more 

useable for clinical and non-clinical applications (Jeunet et al., 2020).  This ‘big data’ approach 

to BCI breaks away from the typical small scale studies that are characteristic in this field, and 

may facilitate more advanced analyses techniques such as machine learning.  

A key challenge is to make BCI tasks more user friendly, providing motivating 

feedback in a style that the user finds useful (Kübler et al., 2014; Pillette et al., 2017).  Both 

hardware and software must be simple to use for patients and caregivers alike, which may result 

in greater enthusiasm towards the technology (Käthner et al., 2017). Tasks should avoid being 

fixed and repetitive, but rather should have an adaptive nature allowing the user to clearly see 

progression through stages as performance improves (Jeunet et al., 2016). BCI approaches that 

focus on assistance with activities of daily living (Soekadar et al., 2016) (particularly bimanual 

tasks in stroke patients) during physiotherapy may foster motivation and generalization of skills 

towards everyday life (Soekadar et al., 2019). Additional to this, attempts to improve scientific 

rigour and reproducibility in neurofeedback research have established the CRED-nf framework 

for reporting of results, and recommendations for future design of studies (Ros et al., 2020). It 

is hoped that these collaborative efforts will improve understanding of BCI mechanisms by 

establishing a degree of standardisation of measurement, and ensuring that adequate 

experimental controls are in place.  

 
 
Conclusions 
 
The technological and practical scalability and clinical justifiability of BCI still pose challenges 

preventing widespread use for neurorehabilitation. Recent advances in knowledge and 
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technology provide opportunities to facilitate a change, provided that researchers and clinicians 

using BCI agree on standardisation of guidelines for protocols and shared efforts to uncover 

mechanisms. Addressing BCI inefficiency and speed of learning are priorities for the field, 

which may be improved by multimodal or multi-stage BCI approaches harnessing more 

sensitive neuroimaging technologies in the early learning stages, before transitioning to more 

practical, mobile implementations. Clarification of the neural mechanisms that give rise to 

improvement in motor function is an essential next step towards justifying clinical use of BCI. 

In particular, quantifying the unknown contribution of non-motor mechanisms to motor 

recovery remains elusive and calls for more stringent control conditions in experimental work. 

Measurement of additional neural (non-motor) systems and of performance on non-motor tasks 

is also essential to demonstrate specificity or transfer of the improvements across cognitive and 

motor domains. If the effects of motor imagery based BCI are found to generalise beyond the 

motor system, for instance to improve cognitive control or gait, the potential relevance of BCI 

is expanded presenting an intriguing opportunity for the field. Ultimately, if the benefits are 

further found to generalise beyond lab-based experimental settings to more ecologically valid 

aspects affecting quality of life such as competence and autonomy (Cremen & Carson, 2017; 

Lövdén et al., 2010), the intervention can truly be deemed as effective and worthwhile 

implementing clinically for neurorehabilitation.  
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