2,656 research outputs found

    Sources of human urinary epinephrine

    Get PDF
    Sources of human urinary epinephrine. The kidney is a likely source for some urinary epinephrine (E) since adrenalectomized animals and humans continue to excrete urinary E and the human kidney contains E synthesizing enzymes. We studied subjects during an intravenous infusion of 3H-E to determine the fraction of urinary E derived from the kidney. Eight normal subjects (CON) and 5 older, heavier hypertensives (OHH) ate a light breakfast along with ascorbic acid supplementation and had intravenous and arterial lines placed. They received an infusion of 3H-E and had an oral water load. During the final hour of 3H-E infusion, urine and arterial blood samples were collected for 3H-E and E levels. After the 3H-E infusion was abruptly discontinued, arterial blood samples were collected to measure 3H-E kinetics. The total body clearance of 3H-E was about 2,500ml/min from plasma and clearance of 3H-E to urine was about 170ml/min. CON had plasma E levels of 43 ± 4 pg/ml. Their predicted rate of clearance of E from plasma to urine of 7,471 ± 865 pg/min was less than (P = 0.018) the actual urinary E excretion of 15,037 ± 2,625 pg/min. Thus, 43 ± 9% of urinary E in CON was apparently derived from renal sources and not filtered from blood. Among OHH 85 ± 4% of urinary E was derived from the kidney, significantly (P < 0.01) different from CON. The OHH also produced much more urinary E than predicted from plasma 3H-E clearance into urine (P = 0.03). A major fraction of urinary E is not filtered from the blood stream but is apparently derived from the kidney. A small fraction of urinary E may be derived from E stored in nerve endings along with norepinephrine, but this probably represents less than 2% of urinary E. Renal cleavage of E sulfate into E may be another potential source of urinary E. Some, and perhaps most, urinary E not filtered from the bloodstream is derived from renal N-methylation of norepinephrine as the human kidney has two enzymes capable of converting norepinephrine to E. In conclusion, a major portion of urinary E is derived from the kidney and not filtered from the bloodstream. This is an important factor in the interpretation of urine E levels. Renal E could alter renal blood flow, electrolyte reabsorption, and renin release prior to excretion into urine

    Game-based learning: addressing curriculum gaps in water management education in Ugandan schools

    Get PDF
    Increased urbanisation and inadequate awareness have affected the availability and subsequent use of freshwater resources in Uganda. Education can play a crucial role in providing support to and training for students on sustainable water use, both at home and at school. Thus, this research assesses the current state of Ugandan education on this subject, by identifying the water-related topics currently featured in the curriculum at different class levels, using questionnaires distributed in four schools. An initial trip to Uganda was made in June-July 2022 (see. Figure 1) to visit schools, deliver questionnaires and gain a deeper understanding of the Uganda National Curriculum on water resources. Two of the schools are located in urban areas, and the other two in rural areas. The locations were specifically selected in an effort to ascertain how students in urban and rural areas behave towards and manage water usage and resources due to the differing context in location. Three separate questionnaires were designed for collecting responses from primary school pupils, secondary school students and teachers. Descriptive and thematic analysis were adopted to analyse the results. The results revealed that water sustainability topics are delivered in the science curriculum at primary level, as opposed to geography at secondary level, suggesting that there is discontinuity of water-related topics within different taught subjects. Furthermore a lack of integrated practical teaching was discovered within the courses currently taught in Ugandan schools. Therefore, in order to contribute to this knowledge-gap, three games, namely i) Water Conservation Snakes and Ladders (WCSL), ii) Water Awareness Quartet Cards (WAQC) and iii) Water Pollution Puzzle (WPP) were designed with the aim to create new material that can be utilised by schools to increase awareness of students on water resource management. A second trip was made to Uganda in July-August 2023 to four additional schools where students were introduced to and able to test the appropriateness of the games as and engaging tool for learning (Figure 2). The impact of the games on student learning was measured by analysing pre-test and post-test questionnaire responses. The average score between a pre-test and a post-test of WAQC increased by 25% and it was the highest average score compared to 18% in WCSL and 14% in WPP. This indicates that the games significantly improved student learning on topics linked with the management and use of water resources. Furthermore, the results revealed that more water-related topics should be included in lower primary level Social studies lessons. An academic year in Uganda for example, runs from January to December and is divided into three (I, II and III) academic terms and it was found that in the academic term II, water-related topics are missing in primary three, four, five and six in the Science lessons. Finally, this study recommends that the Ugandan government integrate game-based learning as a teaching approach in Ugandan schools to increase student awareness of water resource management. Evidence shows that this teaching technique can positively shape knowledge and practice for school students

    Identifying Gaps within the Education System in Uganda to Prepare Students for More Sustainable Water Management in the Future

    Get PDF
    Due to climate change and increased urbanisation, the current level of freshwater withdrawals and corresponding water usage in Uganda has increased, affecting the availability of these resources and becoming a concern. Education can play a crucial role in providing support to and training students on sustainable water use, both at home and in relation to school activities. Therefore, it is imperative that the education system develops actions, approaches and materials to achieve this goal. The paper assesses the current state of existing Ugandan education on this subject, by identifying the water-related topics currently featured in the curriculum at different class levels, with the aid of questionnaires conducted in four schools in Uganda. Three questionnaires (one for primary school pupils, one for secondary school pupils and one for teachers) were designed for collecting targeted data, and thematic analysis was adopted to analyse the data collected. The results revealed important insights regarding students’ behaviours towards water usage at home. They also revealed that water sustainability topics are delivered in the science curriculum at the primary level, as opposed to geography at the secondary level, confirming that overall, there is a lack of integrated practical teaching incorporated within the courses currently taught in Ugandan schools

    Transport and Use of a Centaur Second Stage in Space

    Get PDF
    As nations continue to explore space, the desire to reduce costs will continue to grow. As a method of cost reduction, transporting and/or use of launch system components as integral components of missions may become more commonplace in the future. There have been numerous scenarios written for using launch vehicle components (primarily space shuttle used external tanks) as part of flight missions or future habitats. Future studies for possible uses of launch vehicle upper stages might include asteroid diverter using gravity orbital perturbation, orbiting station component, raw material at an outpost, and kinetic impactor. The LCROSS (Lunar CRater Observation and Sensing Satellite) mission was conceived as a low-cost means of determining whether water exists at the polar regions of the moon. Manifested as a secondary payload with the LRO (Lunar Reconnaissance Orbiter) spacecraft aboard an Atlas V launch vehicle, LCROSS guided its spent Centaur Earth Departure Upper Stage (EDUS) into the lunar crater Cabeu's, as a kinetic impactor. This paper describes some of the challenges that the LCROSS project encountered in planning, designing, launching with and carrying the Centaur upper stage to the moon

    Genetic parameters of dairy cow energy intake and body energy status predicted using mid-infrared spectrometry of milk

    Get PDF
    peer-reviewedEnergy balance (EB) and energy intake (EI) are heritable traits of economic importance. Despite this, neither trait is explicitly included in national dairy cow breeding goals due to a lack of routinely available data from which to compute reliable breeding values. Mid-infrared (MIR) spectrometry, which is performed during routine milk recording, is an accurate predictor of both EB and EI. The objective of this study was to estimate genetic parameters of EB and EI predicted using MIR spectrometry. Measured EI and EB were available for 1,102 Irish Holstein-Friesian cows based on actual feed intake and energy sink data. A subset of these data (1,270 test-day records) was used to develop equations to predict EI, EB, and daily change in body condition score (ΔBCS) and body weight (ΔBW) using the MIR spectrum with or without milk yield also as a predictor variable. Accuracy of cross-validation of the prediction equations was 0.75, 0.73, 0.77, and 0.70 for EI, EB, ΔBCS, and ΔBW, respectively. Prediction equations were applied to additional spectral data, yielding up to 94,653 records of MIR-predicted EI, EB, ΔBCS, and ΔBW available for variance component estimation. Variance components were estimated using repeatability animal linear mixed models. Heritabilities of MIR-predicted EI, EB, ΔBCS, and ΔBW were 0.20, 0.10, 0.07, and 0.06, respectively; heritability estimates of the respective measured traits were 0.35, 0.16, 0.07, and 0.08, respectively. The genetic correlation between measured and MIR-predicted EI was 0.84 and between measured and MIR-predicted EB was 0.54, indicating that selection based on MIR-predicted EI or EB would improve true EI or EB. Genetic and phenotypic associations between EI and both the milk production and body-change traits were generally in agreement, regardless of whether measured EI or MIR-predicted EI was considered. Higher-yielding animals of higher body weight had greater EI. Predicted EB was negatively genetically correlated with milk yield (genetic correlation = −0.29) and positively genetically correlated with both milk fat and protein percent (genetic correlation = 0.17 and 0.16, respectively). Least squares means phenotypic EI of 198 animals stratified as low, average, and high estimated breeding values for MIR-predicted EI (animal phenotypes were not included in the genetic evaluation) were 154.3, 156.0, and 163.3 MJ/d, corroborating that selection on MIR-predicted EI will, on average, result in differences in phenotypic true EI

    Cruise Report: EX-17-11 Gulf of Mexico 2017 (ROV and Mapping)

    Get PDF
    From November 29, 2017 to December 21, 2017, the NOAA Office of Ocean Exploration and Research (OER) and partners conducted a telepresence-enabled ocean exploration expedition on NOAA Ship Okeanos Explorer to collect critical baseline data and information and to improve knowledge about unexplored and poorly understood deepwater areas of the Gulf of Mexico. The Gulf of Mexico 2017 (EX-17-11) expedition was part of a series of expeditions between 2017 and 2018 that explored deepwater areas in the Gulf of Mexico. During 23 days at sea, 17 remotely operated vehicle (ROV) dives were completed off the Western Florida Escarpment and in the central and western Gulf of Mexico. Over 93 hours of ROV bottom time were logged at depths between 300 and 2,321 meters. Over 20,000 square kilometers of seafloor were mapped. A total of 138 biological and 11 geological samples were collected. The expedition gathered over 280,000 live video views worldwide and the OER website received over 35,600 views. A core onshore science team of over 80 participants from around the world collaborated and supported real-time ocean exploration science. The data associated with this expedition have been archived and are publicly available through the NOAA Archives

    Decreased Proliferation Kinetics of Mouse Myoblasts Overexpressing FRG1

    Get PDF
    Although recent publications have linked the molecular events driving facioscapulohumeral muscular dystrophy (FSHD) to expression of the double homeobox transcription factor DUX4, overexpression of FRG1 has been proposed as one alternative causal agent as mice overexpressing FRG1 present with muscular dystrophy. Here, we characterize proliferative defects in two independent myoblast lines overexpressing FRG1. Myoblasts isolated from thigh muscle of FRG1 transgenic mice, an affected dystrophic muscle, exhibit delayed proliferation as measured by decreased clone size, whereas myoblasts isolated from the unaffected diaphragm muscle proliferated normally. To confirm the observation that overexpression of FRG1 could impair myoblast proliferation, we examined C2C12 myoblasts with inducible overexpression of FRG1, finding increased doubling time and G1-phase cells in mass culture after induction of FRG1 and decreased levels of pRb phosphorylation. We propose that depressed myoblast proliferation may contribute to the pathology of mice overexpressing FRG1 and may play a part in FSHD

    Thermodynamic Constraints on Nitrogen Transformations and Other Biogeochemical Processes at Soil-Stream Interfaces

    Get PDF
    There is much interest in biogeochemical processes that occur at the interface between soils and streams since, at the scale of landscapes, these habitats may function as control points for fluxes of nitrogen (N) and other nutrients from terrestrial to aquatic ecosystems. Here we examine whether a thermodynamic perspective can enhance our mechanistic and predictive understanding of the biogeochemical function of soil-stream interfaces, by considering how microbial communities interact with variations in supplies of electron donors and acceptors. Over a two-year period we analyzed \u3e1400 individual samples of subsurface waters from networks of sample wells in riparian wetlands along Smith Creek, a first-order stream draining a mixed forested-agricultural landscape in southwestern Michigan, USA. We focused on areas where soil water and ground water emerged into the stream, and where we could characterize subsurface flow paths by measures of hydraulic head and/or by in situ additions of hydrologic tracers. We found strong support for the idea that the biogeochemical function of soil-stream interfaces is a predictable outcome of the interaction between microbial communities and supplies of electron donors and acceptors. Variations in key electron donors and acceptors (NO3−,N2O,NH4+,SO42−,CH4 role= presentation \u3eNO3−,N2O,NH4+,SO42−,CH4 ,, and dissolved organic carbon [DOC]) closely followed predictions from thermodynamic theory. Transformations of N and other elements resulted from the response of microbial communities to two dominant hydrologic flow paths: (1) horizontal flow of shallow subsurface waters with high levels of electron donors (i.e., DOC, CH4, and NH4+),, and (2) near-stream vertical upwelling of deep subsurface waters with high levels of energetically favorable electron acceptors (i.e., NO3-,N2O, and SO42-).. Our results support the popular notion that soil-stream interfaces can possess strong potential for removing dissolved N by denitrification. Yet in contrast to prevailing ideas, we found that denitrification did not consume all NO3- that reached the soil-stream interface via subsurface flow paths. Analyses of subsurface N chemistry and natural abundances of δ 15N in NO3- and NH4+ suggested a narrow near-stream region as functionally the most important location for NO3- consumption by denitrification. This region was characterized by high throughput of terrestrially derived water, by accumulation of dissolved NO3- and N2O, and by low levels of DOC. Field experiments supported our hypothesis that the sustained ability for removal of dissolved NO3- and N2O should be limited by supplies of oxidizable carbon via shallow flowpaths. In situ additions of acetate, succinate, and propionate induced rates of NO3- removal (∼ 1.8 g N· m-2· d-1) that were orders of magnitude greater than typically reported from riparian habitats. We propose that the immediate near-stream region may be especially important for determining the landscape-level function of many riparian wetlands. Management efforts to optimize the removal of NO3- by denitrification ought to consider promoting natural inputs of oxidizable carbon to this near-stream region

    Extrapleural pneumonectomy for malignant pleural mesothelioma: Outcomes of treatment and prognostic factors

    Get PDF
    ObjectiveThis study aimed to evaluate the perioperative and long-term outcomes associated with extrapleural pneumonectomy for patients with malignant pleural mesothelioma.MethodsFrom October 1994 to April 2008, 70 patients were selected for extrapleural pneumonectomy. Univariate analysis was performed using the Kaplan–Meier method and compared using the log-rank test. Multivariate analysis with entering and removing limits of P less than .10 and P greater than .05, respectively, was used. The prognostic factors included age, gender, side of disease, asbestos exposure, histology, positron emission tomography, date of surgery, neoadjuvant chemotherapy, completeness of cytoreduction, lymph node involvement, perioperative morbidity, adjuvant radiotherapy, and pemetrexed-based chemotherapy.ResultsThe mean age of patients was 55 years (standard deviation = 10). Fifty-eight patients had epithelial tumors. Six patients received neoadjuvant chemotherapy, 28 patients received adjuvant radiotherapy, and 16 patients received postoperative pemetrexed-based chemotherapy. Forty-four patients had no lymph node involvement. The perioperative morbidity and mortality were 37% and 5.7%, respectively. Complications included hemothorax (n = 7), atrial fibrillation (n = 6), empyema (n = 4), bronchopulmonary fistula (n = 3), right-sided heart failure (n = 2), pneumonia (n = 1), constrictive pericarditis (n = 1), acute pulmonary edema (n = 1), small bowel herniation (n = 1), and disseminated intravascular coagulopathy (n = 1). The median survival was 20 months, with a 3-year survival of 30%. Asbestos exposure, negative lymph node involvement, and receipt of adjuvant radiation or postoperative pemetrexed-based chemotherapy were associated with improved survival on both univariate and multivariate analyses.ConclusionThe present study supports the use of extrapleural pneumonectomy-based multimodal therapy in carefully selected patients with malignant pleural mesothelioma
    • …
    corecore