130 research outputs found

    The genetics, structure and function of the M1 aminopeptidase oxytocinase subfamily and their therapeutic potential in immune-mediated disease

    Get PDF
    The oxytocinase subfamily of M1 aminopeptidases plays an important role in processing and trimming of peptides for presentation on major histocompatibility (MHC) Class I molecules. Several large-scale genomic studies have identified association of members of this family of enzymes, most notably ERAP1 and ERAP2, with immune-mediated diseases including ankylosing spondylitis, psoriasis and birdshot chorioretinopathy. Much is now known about the genetics of these enzymes and how genetic variants alter their function, but how these variants contribute to disease remains largely unresolved. Here we discuss what is known about their structure and function and highlight some of the knowledge gaps that affect development of drugs targeting these enzymes

    Distinct subpopulations of gy T cells are present in normal and tumor-bearing human liv

    Get PDF
    gy T cells are thought to mediate immune responses at epithelial surfaces. We have quantified and characterized hepatic and peripheral blood gy T cells from 11 normal and 13 unresolved tumor-bearing human liver specimens. gy T cells are enriched in normal liver (6.6% of T cells) relative to matched blood (0.9%; P = 0.008). The majority express CD4CD8 phenotypes and many express CD56 and/or CD161. In vitro, hepatic gy T cells can be induced to kill tumor cell lines and release interferon-g, tumor necrosis factor-a, interleukin-2 and interleukin- 4. Analysis of Vgand Vy chain usage indicated that Vy3+ cells are expanded in normal livers (21.2% of gy T cells) compared to blood (0.5%; P = 0.001). Tumor-bearing livers had significant expansions and depletions of gy T cell subsets but normal cytolytic activity. This study identifies novel populations of liver T cells that may play a role in immunity against tumors

    Distinct subpopulations of gy T cells are present in normal and tumor-bearing human liv

    Get PDF
    gy T cells are thought to mediate immune responses at epithelial surfaces. We have quantified and characterized hepatic and peripheral blood gy T cells from 11 normal and 13 unresolved tumor-bearing human liver specimens. gy T cells are enriched in normal liver (6.6% of T cells) relative to matched blood (0.9%; P = 0.008). The majority express CD4CD8 phenotypes and many express CD56 and/or CD161. In vitro, hepatic gy T cells can be induced to kill tumor cell lines and release interferon-g, tumor necrosis factor-a, interleukin-2 and interleukin- 4. Analysis of Vgand Vy chain usage indicated that Vy3+ cells are expanded in normal livers (21.2% of gy T cells) compared to blood (0.5%; P = 0.001). Tumor-bearing livers had significant expansions and depletions of gy T cell subsets but normal cytolytic activity. This study identifies novel populations of liver T cells that may play a role in immunity against tumors

    Diverse populations of T cells with NK cell receptors accumulate in the human intestine in health and in colorectal cancer

    Get PDF
    T cells expressing NK cell receptors (NKR) display rapid MHC-unrestricted cytotoxicity and potent cytokine secretion and are thought to play roles in immunity against tumors. We have quantified and characterized NKR+ T cells freshly isolated from epithelial and lamina propria layers of duodenum and colon from 16 individuals with no evidence of gastrointestinal disease and from tumor and uninvolved tissue from 19 patients with colorectal cancer. NKR+ T cell subpopulations were differentially distributed in different intestinal compartments, and CD161+ T cells accounted for over one half of T cells at all locations tested. Most intestinal CD161+ T cells expressed § g TCR and either CD4 or CD8. Significant proportions expressed HLA-DR, CD69 and Fas ligand. Upon stimulation in vitro, CD161+ T cells produced IFN- + and TNF- § but not IL-4. NKT cells expressing the V § 24V g 11 TCR, which recognizes CD1d, were virtually absent from the intestine, but colonic cells produced IFN- + in response to the NKT cell agonist ligand § -galactosylceramide. NKR+ T cells were not expanded in colonic tumors compared to adjacent uninvolved tissue. The predominance, heterogeneity and differential distribution of NKR+ T cells at different intestinal locations suggests that they are central to ntestinal immunity

    Inflammation-driven bone formation in a mouse model of ankylosing spondylitis: sequential not parallel processes

    Get PDF
    Background\ud \ud Ankylosing spondylitis (AS) is an immune-mediated arthritis particularly targeting the spine and pelvis and is characterised by inflammation, osteoproliferation and frequently ankylosis. Current treatments that predominately target inflammatory pathways have disappointing efficacy in slowing disease progression. Thus, a better understanding of the causal association and pathological progression from inflammation to bone formation, particularly whether inflammation directly initiates osteoproliferation, is required.\ud \ud Methods\ud \ud The proteoglycan-induced spondylitis (PGISp) mouse model of AS was used to histopathologically map the progressive axial disease events, assess molecular changes during disease progression and define disease progression using unbiased clustering of semi-quantitative histology. PGISp mice were followed over a 24-week time course. Spinal disease was assessed using a novel semi-quantitative histological scoring system that independently evaluated the breadth of pathological features associated with PGISp axial disease, including inflammation, joint destruction and excessive tissue formation (osteoproliferation). Matrix components were identified using immunohistochemistry.\ud \ud Results\ud \ud Disease initiated with inflammation at the periphery of the intervertebral disc (IVD) adjacent to the longitudinal ligament, reminiscent of enthesitis, and was associated with upregulated tumor necrosis factor and metalloproteinases. After a lag phase, established inflammation was temporospatially associated with destruction of IVDs, cartilage and bone. At later time points, advanced disease was characterised by substantially reduced inflammation, excessive tissue formation and ectopic chondrocyte expansion. These distinct features differentiated affected mice into early, intermediate and advanced disease stages. Excessive tissue formation was observed in vertebral joints only if the IVD was destroyed as a consequence of the early inflammation. Ectopic excessive tissue was predominantly chondroidal with chondrocyte-like cells embedded within collagen type II- and X-rich matrix. This corresponded with upregulation of mRNA for cartilage markers Col2a1, sox9 and Comp. Osteophytes, though infrequent, were more prevalent in later disease.\ud \ud Conclusions\ud \ud The inflammation-driven IVD destruction was shown to be a prerequisite for axial disease progression to osteoproliferation in the PGISp mouse. Osteoproliferation led to vertebral body deformity and fusion but was never seen concurrent with persistent inflammation, suggesting a sequential process. The findings support that early intervention with anti-inflammatory therapies will be needed to limit destructive processes and consequently prevent progression of AS

    RUNX3 and T-Bet in Immunopathogenesis of Ankylosing Spondylitis—Novel Targets for Therapy?

    Get PDF
    Susceptibility to ankylosing spondylitis (AS) is polygenic with more than 100 genes identified to date. These include HLA-B27 and the aminopeptidases (ERAP1, ERAP2, and LNPEPS), which are involved in antigen processing and presentation to T-cells, and several genes (IL23R, IL6R, STAT3, JAK2, IL1R1/2, IL12B, and IL7R) involved in IL23 driven pathways of inflammation. AS is also strongly associated with polymorphisms in two transcription factors, RUNX3 and T-bet (encoded by TBX21), which are important in T-cell development and function. The influence of these genes on the pathogenesis of AS and their potential for identifying drug targets is discussed here

    Anthropology on Economic Development in Hanoi, Capital of Vietnam Analysis of Commercial Activities of Hanghom Paint Shops Street

    Get PDF
    The killer immunoglobulin-like receptors (KIRs), found predominantly on the surface of natural killer (NK) cells and some T-cells, are a collection of highly polymorphic activating and inhibitory receptors with variable specificity for class I human leukocyte antigen (HLA) ligands. Fifteen KIR genes are inherited in haplotypes of diverse gene content across the human population, and the repertoire of independently inherited KIR and HLA alleles is known to alter risk for immune-mediated and infectious disease by shifting the threshold of lymphocyte activation. We have conducted the largest disease-association study of KIR-HLA epistasis to date, enabled by the imputation of KIR gene and HLA allele dosages from genotype data for 12,214 healthy controls and 8,107 individuals with the HLA-B*27-associated immune-mediated arthritis, ankylosing spondylitis (AS). We identified epistatic interactions between KIR genes and their ligands (at both HLA subtype and allele resolution) that increase risk of disease, replicating analyses in a semi-independent cohort of 3,497 cases and 14,844 controls. We further confirmed that the strong AS-association with a pathogenic variant in the endoplasmic reticulum aminopeptidase gene ERAP1, known to alter the HLA-B*27 presented peptidome, is not modified by carriage of the canonical HLA-B receptor KIR3DL1/S1. Overall, our data suggests that AS risk is modified by the complement of KIRs and HLA ligands inherited, beyond the influence of HLA-B*27 alone, which collectively alter the proinflammatory capacity of KIR-expressing lymphocytes to contribute to disease immunopathogenesis

    Antigen-specific CD4 cells assist CD8 T-effector cells in eliminating keratinocytes

    Get PDF
    Keratinocytes expressing tumor or viral antigens can be eliminated by antigen-primed CD8 cytotoxic T cells. CD4 T-helper cells help induction of CD8 cytotoxic T cells from naive precursors and generation of CD8 T-cell memory. In this study, we show, unexpectedly, that CD4 cells are also required to assist primed CD8 effector T cells in rejection of skin expressing human growth hormone, a neo-self-antigen, in keratinocytes. The requirement for CD4 cells can be substituted by CD40 costimulation. Rejection of skin expressing ovalbumin (OVA), a non-self-antigen, by primed CD8 cytotoxic T cells can in contrast occur without help from antigen-specific CD4 T cells. However, rejection of OVA expressing keratinocytes is helped by antigen-specific CD4 T cells if only low numbers of primed or naive OVA-specific CD8 T cells are available. Effective immunotherapy directed at antigens expressed in squamous cancer may therefore be facilitated by induction of tumor antigen-specific CD4 helper T cells, as well as cytotoxic CD8 T cells

    A transient disruption of fibroblastic transcriptional regulatory network facilitates trans-differentiation

    Get PDF
    Transcriptional Regulatory Networks (TRNs) coordinate multiple transcription factors (TFs) in concert to maintain tissue homeostasis and cellular function. The re-establishment of target cell TRNs has been previously implicated in direct trans-differentiation studies where the newly introduced TFs switch on a set of key regulatory factors to induce de novo expression and function. However, the extent to which TRNs in starting cell types, such as dermal fibroblasts, protect cells from undergoing cellular reprogramming remains largely unexplored. In order to identify TFs specific to maintaining the fibroblast state, we performed systematic knockdown of 18 fibroblast-enriched TFs and analyzed differential mRNA expression against the same 18 genes, building a Matrix-RNAi. The resulting expression matrix revealed seven highly interconnected TFs. Interestingly, suppressing four out of seven TFs generated lipid droplets and induced PPARG and CEBPA expression in the presence of adipocyte-inducing medium only, while negative control knockdown cells maintained fibroblastic character in the same induction regime. Global gene expression analyses further revealed that the knockdown-induced adipocytes expressed genes associated with lipid metabolism and significantly suppressed fibroblast genes. Overall, this study reveals the critical role of the TRN in protecting cells against aberrant reprogramming, and demonstrates the vulnerability of donor cell's TRNs, offering a novel strategy to induce transgene-free trans-differentiations
    corecore