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Abstract 

The oxytocinase subfamily of M1 aminopeptidases plays an important role in processing and 

trimming of peptides for presentation on major histocompatibility (MHC) Class I molecules. Several 

large-scale genomic studies have identified association of members of this family of enzymes, most 

notably ERAP1 and ERAP2, with immune-mediated diseases including ankylosing spondylitis, 

psoriasis and birdshot chorioretinopathy. Much is now known about the genetics of these enzymes 

and how genetic variants alter their function, but how these variants contribute to disease remains 

largely unresolved. Here we discuss what is known about their structure and function and highlight 

some of the knowledge gaps that affect development of drugs targeting these enzymes.  
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M1 aminopeptidase oxytocinase subfamily - protein structure and function 

Adaptive cellular immune responses require the cell-surface presentation of processed self-proteins 

and foreign-derived antigens by the Major Histocompatibility Complex (MHC) molecules. Dedicated 

antigen-presenting cells (APC) of the immune system express MHC class II ligands (MHC-II), which 

are used to activate CD4+ T-cells in response to internalised and presented exogenous proteins 

sourced from extracellular pathogens. In contrast, almost all cells carry MHC class I (MHC-I), which 

typically displays endogenous peptides derived from normal cellular proteins. Screening against 

MHC-I and II complexes displaying self-peptides facilitates the selection of self-tolerant T-cells during 

maturation in the thymus, with the deletion of autoreactive cells with a low threshold of activation 

against self. In contrast self-MHC-I recognition by natural killer (NK) cells suppresses cytotoxic NK 

function via signalling through inhibitory receptors for MHC-I ligands on the lymphocyte.  Infected or 

transformed cells produce altered arrays of cellular proteins and hence altered MHC-I complexes, 

activating CD8+ cytotoxic T lymphocytes (CTLs) or NK cells to eliminate the aberrant cells. The 

generation of antigenic peptides, however, can also be disturbed in ways that lead to immune 

system evasion or to autoimmune reactions. 

 

While some antigenic peptides can be generated by other cytosolic proteases, most are derived 

from endogenous proteins through proteolytic processing by the proteasome [1] which typically 

produces only a limited percentage of peptide fragments of the appropriate length for MHC 

presentation (8 to 10 residues) [2]. While the proteasome-generated C-termini of the peptides are 

always maintained for MHC binding, some sequences require further N-terminal proteolysis to trim 

the peptides to the correct length. Two aminopeptidases in the endoplasmic reticulum (ER), 

endoplasmic reticulum aminopeptidases 1 and 2 (ERAP1 and ERAP2) are responsible for this N-

terminal antigen trimming [3], which determines the peptide repertoire dispayed by MHC -I 

molecules [4]. The repertoire of cleaved, MHC-I-bound endogenous peptides presented to the 

immune system not only provides a means for lymphocytes to effectively monitor for infection, but 

is imperative in shaping tolerogenic T-cell populations in the negative selection of autoreactive cells. 

This mechanism of self-recognition through MHC-I presentation of endogenous peptides allows 

infected and transformed cells to be identified through the altered array of MHC-I – peptide (pMHC-

I) complexes on the cell surface, leading to elimination of the aberrant cells.   

 

While recognition of aberrant cells through pMHC-I can occur for all cell types, the actual activation 

of effector CTLs is dependent on professional APCs. Subsequently, most cancers and infections that 

have specific cell tropism not involving APCs require another process to activate the immune 



  

 

response. This process, known as “cross-presentation”, allows exogenous antigens to be assembled 

in MHC-I complexes by dendritic cells (DC) [5]. Following phagocytosis of exogenous antigens by DCs 

the antigens will either remain within the phagosome and be proteolysed by lysosomal proteases, 

particularly cathepsin S, or be exported to the cytosol where they are processed by the proteasome. 

Processed fragments may be transported to the ER for further processing by ERAP1 and ERAP2 [6] or 

are returned to the phagosome where they are N-terminally trimmed by the insulin-regulated 

aminopeptidase (IRAP) [7, 8], a closely related enzyme to ERAP1 and ERAP2. Given that cytosolic and 

ER aminopeptidases directly sculpt the peptidome that educates and instructs immune responses, it 

is easy to conceptualise that genetic polymorphisms that impact on their expression or function may 

predispose to immune-mediated pathologies. In recent years, deconvolution of the genetic 

contributors to complex immune-mediated diseases has revealed that, in many distinct conditions, 

these enzymes are implicated in the altered biological processes that likely culminate in 

autoimmunity [9-14]. 

 
ERAP1, ERAP2 and IRAP are members of the oxytocinase subfamily of M1 aminopeptidases and are 

characterised by the presence of two key sequence motifs; the HEXXH zinc-binding and GXMEN 

substrate recognition sequences [15-17]. The ERAP1, ERAP2 and IRAP genes are, in humans, located 

on chromosome 5q15, suggesting recent gene duplication events and subsequent divergence; 

interestingly mice only have genes for ERAP1 (chromosome 13, known as ERAAP in rodents) and 

IRAP (chromosome 17). At the amino acid sequence level the proteins are closely related, with IRAP 

showing 43 and 49% identity to ERAP1 and ERAP2 respectively, while the two ERAP enzymes are 

49% identical.  

 

The crystal structures of ERAP1 [18, 19], the first of the family to be determined, revealed a four 

domain structure enclosing a large internal cavity containing the catalytic zinc ion (Figure 1). The 

catalytic zinc is bound to Domain II, which has a thermolysin-like fold and contains both the 

characteristic HEXXH and GXMEN motifs. Domain I and Domain IV enclose the active site cavity, 

Domain I has a cap on the amino terminal end of the site and Domain IV a bowl that forms most of 

the actual cavity. Domain III is a β-sandwich structure that links Domains II and IV.  These first 

structures highlighted the importance of conformational flexibility in the function of these proteins, 

with different ‘open’ and ‘closed’ forms identified (Figure 1). This result was emphasised with the 

structure of IRAP being found in an intermediate ‘semi-closed’ conformation [20] (Figure 1). Along 

with structures of ERAP2 [21, 22], these data indicated that the ‘closed’ form of the enzyme is the 

active conformation, with the ‘open’ form representing an inactive state [22] potentially involved in 

substrate exchange. 



  

 

 

Further structures of ERAP1, ERAP2 and IRAP, some complexed with inhibitors or other ligands, have 

subsequently been determined (summarised in Table 1). As with the initial structures, the key insight 

from these data is the role of flexibility in the activity of the proteins. For example, significant 

rearrangements of the GAMEN motif in IRAP were observed upon ligand binding, which coupled to 

the transition between the original partially open and a new, fully closed conformation of the 

protein [23]. Similarly, co-crystal structures of ERAP2 with various inhibitors showed a mixture of 

single conformation complexes and those with two or more alternate binding configurations [24] 

due to rearrangement of the active site residues. The structures also shed light on the differential 

substrate specificity of the enzymes, in particular the ‘molecular ruler’ aspect peculiar to ERAP1 

activity where the enzyme is highly active on model substrates of more than 9 residues but 

effectively inactive on shorter peptides. A hydrophobic pocket distinct from the active site region 

was postulated to anchor C-terminal hydrophobic residues on a peptide, positioning the substrate 

correctly in the active site with peptides less than 9 residues in length unable to span the critical 

distance between these sites [18, 19]. 

 

The role of conformational flexibility in the function of the M1 aminopeptidases has also been 

explored through molecular dynamics simulations of both IRAP [23] and ERAP1 [25]. While the IRAP 

simulations focused on local adaptation to the binding of a pseudopeptidic ligand, the ERAP1 

simulations were intended to explore large scale motions of the protein. This analysis showed that 

the three structural states seen in crystal structures (open, closed and intermediate ‘semi-closed’) 

are accessible, in the absence of ligand, with very low energy barriers for transition between the 

conformations. The simulations also provided a working model for the interaction of ERAP1 with an 

MHC-I antigen complex, an interaction that is hypothesised to occur during antigen trimming [26], 

but that has been difficult to model on the basis of experimental structures. A ‘wide-open’ 

conformation of ERAP1 was shown to be potentially accessible, in which the angle between Domain 

IV and the rest of the protein increases to a degree that provides room for the insertion of a peptide-

MHC-I complex. The complex can pack close enough to the active site to bring the N-terminal end of 

the peptide into the active site pocket [25]. Whether trimming of MHC-I bound peptides by ERAP1 or 

2 occurs in vivo remains controversial, particularly in light of the structure of the MHC-I peptide-

loading complex (PLC) where the MHC-I-peptide is significantly enclosed by the components of the 

PLC  [27]. 

 

Role of Aminopeptidases in the Pathogenesis of Immune Mediated Inflammatory Diseases 



  

 

While there are abundant data to associate the genetics of aminopeptidases with increased 

susceptibility to certain immune-mediated diseases (summarised in Table 2), paradoxically the 

mechanisms through which aminopeptidases affect disease pathogenesis remain poorly understood. 

Over the past decade, genome-wide association studies (GWAS) of immune-mediated disease have 

emphasised the contribution of tens to hundreds of independent loci to the genetic risk of these 

multifactorial conditions. The strongest genetic associations seen are those with specific class 1 and 

class 2 human leukocyte antigen (HLA) alleles [28], often with concurrent disease risk 

polymorphisms in the endoplasmic reticulum aminopeptidase genes ERAP1 and ERAP2. Disease-

associated SNPs in ERAP1 and/or ERAP2 have been identified in ankylosing spondylitis (AS) [9], 

Behcet’s disease [11], Crohn’s disease [13], multiple sclerosis [14], birdshot chorioretinopathy [29], 

Type I diabetes [30], Kawasaki disease [31], and psoriasis [10], although elucidating precisely how 

these genetic changes contribute to a phenotype of immune dysregulation has proven difficult. As 

reviewed below, there is now substantial evidence that ERAP polymorphisms alter the HLA-

presented peptidome by changing the activity and specificity of the enzyme, adding weight to the 

observation that their genetic effects are often restricted to a specific HLA background. When first 

identified, the restriction of ERAP1 associations to HLA-B*27 positive individuals with AS was the 

most robust evidence of genetic epistasis observed in any complex disease [32]; a phenomenon later 

also detected in those carrying the AS risk allele HLA-B*40 [33]. Epistatic interactions have also been 

identified between ERAP1 and HLA-Cw*06 in psoriasis [10], HLA-B*51 in Behcet’s disease [11] and 

recently between ERAP2 and HLA-A*29:02 in birdshot chorioretinopathy [12]. Given the distinct and 

differing peptide specificities of HLA alleles, it is fathomable that changes in the peptide pool are 

exacerbated when those changes can be translated to the immune system through the appropriately 

inherited HLA, thus the co-dependence of these two loci in conferring risk. 

 

Ankylosing spondylitis 

The motivation to understand the role of ERAP enzymes in instructing the immune system has firmly 

oriented the field of AS research in particular. The finding that the HLA-B*27 allele is almost essential 

for AS development still lacks an immunological explanation, despite being made nearly 50 years ago 

[34, 35]. A landmark study published in 2007 first identified two nonsynonymous SNPs in ERAP1 

(then termed ARTS1, situated on chromosome 5q15) with strong AS associations in a European 

cohort, rs30187 and rs27044 [9]. The rs30187 association, and that with three further 

nonsynonymous ERAP1 polymorphisms (rs17482078, rs10050860, rs2287987), was validated in a 

North American Caucasian replication study, tagging the gene as an excellent functional candidate 

for driving disease, possibly by means of altering the HLA-B*27 restricted peptidome [9]. Further fine 



  

 

mapping of ERAP1 revealed it as a highly polymorphic gene; 11 non-synonymous coding variants (3 

novel in codons for highly conserved amino acids), and a number of non-coding SNPs near intron-

exon splice sites and within the 5’UTR identified in just 48 individuals with AS [36]. ERAP1 SNP 

associations have been repeatedly replicated in population studies of varying sizes across varying 

ethnicities [37-44], and the first  to identify a strong disease associated haplotype 

(rs27044[C])/rs10050860[C]/rs30187[T]) in three independent cohorts suggested that haplotypic 

combinations of susceptibility alleles contribute substantially to disease risk [38]. Ten ERAP1 

haplotypes, encoding functionally distinct allotypes, have since been identified at >1% frequency 

across the human population [45]. The AS risk association remains largely attributed to common 

haplotypes containing the risk alleles rs30187[T] and rs10050860[C] [46]. 

 

It is now understood that ERAP1 associations can be partitioned into a primary SNP effect at 

rs30187, and a secondary independent association with rs10050860 that retains significance upon 

conditioning on the primary signal. HLA-B*27 positive individuals homozygous for protective variants 

at both SNPs are afforded a 3-4 times lower disease risk than HLA-B*27 carriers co-inheriting the risk 

alleles, yet, remarkably, these associations do not prevail in HLA-B*27/HLA-B*40 negative disease 

[32]. Three more aminopeptidase associations have been revealed in recent years, driven by SNPs in 

the 5q15 locus aminopeptidases ERAP2 and LNPEP (encoding IRAP), and the cytosolic 

aminopeptidase NPEPPS on chromosome 17q21 [47]. ERAP2 and LNPEP associations are only seen 

upon correction for the nearby ERAP1 association. The association of ERAP2 with AS was initially 

reported in HLA-B*27 negative individuals [47] and a loss of function variant in ERAP2 is protective in 

both HLA-B*27 positive and negative AS cases [48]. It should be noted that, although the identified 

epistasis between HLA-B*27 and ERAP1 has propelled research into the molecular mechanisms 

underlying disease aetiology, much is still to be understood about the genetic contributors to AS and 

how they interact in a biological system. AS has been estimated to have a heritability of >90% and 

only 20.1% of this attributed to the carriage of HLA-B*27, with a small additional fraction (4.3%) to 

polymorphisms at other loci including the aminopeptidase associations. That altered peptide 

processing may initiate damaging immunological processes in this disease is the crux of many 

hypotheses addressing the root cause of pathology, but these need to be addressed in the context of 

the immunological background upon which they act, the genetic moderators of which have been 

only partially devised. 

 

Psoriasis 



  

 

There are strong associations between psoriasis and polymorphisms in ERAP1 [10] and ERAP2 [49]. 

Analogous to the HLA-B*27/ERAP1 interactions in AS, HLA-Cw*06/ERAP1 epistasis was identified in 

psoriasis [10]. Moreover, the ERAP1 associations with AS and psoriasis are concordant (same 

haplotype with the same direction of association). It is highly likely, therefore, that ERAP1 and 

probably ERAP2 play similar roles in pathogenesis of AS and psoriasis. However, few studies have 

examined the HLA-Cw*06 peptidome in detail and only a small number of Cw6 ligands are known. In 

the absence of detail, we can only speculate as to the functions of ERAP1/2 in psoriasis but the 

highly analogous nature of the HLA-aminopeptidase genetics and gene-gene interactions in AS and 

psoriasis suggests that common modes of action operate in both diseases.  

 

Birdshot chorioretinopathy (BSCR) 

This rare form of autoimmune posterior uveitis is strongly associated with HLA-A*29 [50] but large-

scale genetic studies in BSCR are difficult due to the low prevalence of disease.  Nonetheless BSCR 

has recently been associated with ERAP2 polymorphisms [29]. BSCR has not yet been genetically 

linked with ERAP1 variants but in vitro biochemical analysis of the HLA-A*29 peptidome in cells 

expressing different functional variants of ERAP1 demonstrated that peptide length, sequence and 

HLA-binding affinity were affected [51] in a manner similar to that observed elsewhere for HLA-

B*27. The influence of ERAP2 on the HLA-A*29 peptidome is yet unknown. 

 

Behcet’s disease 

Behcet’s disease, a form of vasculitis common in Turkey, East Asia and the middle East, is strongly 

associated with HLA-B*51 [52]. GWAS revealed epistasis between ERAP1 and HLA-B*51 in Behcet’s 

patients [11]  supporting a role for ERAP1 in sculpting the HLA-B*51 peptidome. Interestingly 

though, one of the strongest associated SNPs in ERAP1, rs17482078 showed opposite directions of 

association in Behcet’s to that in AS. Q725 increases the risk for Behçet's disease but is protective for 

AS. The HLA-B*51 peptidome has been described [53] but the influence of ERAP1 variants on this 

has yet to be defined.  

 

Functional Consequences of Polymorphisms in Aminopeptidases 

With thorough genomic dissection of the 5q15 locus confirming its relevance to several immune 

mediated conditions, functional studies isolating causal mutations and their direction of effect are 

pertinent. The rs30187 C allele, a Lys528Arg non-synonymous amino acid change protective for both 

AS and psoriasis [10, 47], shows a significantly reduced rate of substrate trimming both in 

recombinant protein and in vitro assays [18, 32, 54]. Similarly, the ERAP2 protective allele rs2549782 



  

 

(G, Asn392Lys) excises N-terminal residues from peptide epitopes, particularly those with a 

positively charged or hydrophobic N-terminal, up to 165-fold slower than the risk associated variant 

[55]. This may be of little practical relevance however, since the SNP encoding this substitution 

is tightly associated with rs2248374 that abolishes ERAP 2 expression. While they share 

homology there is little redundancy in the cooperative function of ERAP1 and 2, each enzyme 

showing a unique substrate specificity and catalytic potential.  

 

Highly active variants of ERAP1 carrying a combination of disease-risk polymorphisms have been 

shown to over-trim peptide substrates [56, 57]. In vitro these alleles generate a HLA-B*27 

peptidome skewed towards nonamers over longer peptides and with a reduction in peptides with an 

alanine at position 1 (P1), a residue highly susceptible to ERAP1 cleavage. Several recent studies 

have examined the effects of ERAP1 haplotypes on the HLA-B*27 peptidome [57-59]. Combined, 

these studies highlight some key features of ERAP1 biology that influence HLA-B*27 antigen 

presentation: ERAP1 polymorphisms influence trimming and presentation of many peptides; most, 

but not all, ERAP1 variants affect peptides at the P1 residue; and, the influence of ERAP1 on the HLA-

B*27 peptidome is very diverse due to the multiplicity of ERAP1 variants and the complexity of their 

patterns of inheritance in various haplotypic combinations. Conversely, ERAP2 preferentially 

destroys peptides with N-terminal basic residues that are generated by highly active ERAP1 variants, 

lowering the affinity of the HLA-B*27 peptidome in which basic P1 residues are favoured [56]. It has 

further been proposed that ERAP2 may influence peptide length by allosteric activation of ERAP1 in 

ERAP1-ERAP2 heterodimers [26, 60].  

 

In AS, ERAP proteins are proposed to influence immune function in three possible ways: (i) by 

altering the HLA-B*27 peptidome in such a manner as to generate an arthritogenic peptide; (ii) by 

disrupting folding of peptide:MHC complexes resulting in an unfolded protein response (UPR) and 

induction of ER stress; (iii) by contributing to the formation of cell surface HLA-B*27 homodimers as 

a result of abnormal trimming of peptide and subsequent formation of unstable peptide:HLA-B*27 

complexes. HLA-B*27 homodimers are subsequently recognised by specific CD4 T cells [61]. 

Evidence supporting roles for ERAP proteins in all three models exists (reviewed elsewhere [62, 63]). 

However, evidence demonstrating the UPR model has been difficult to prove in humans [64, 65] 

despite strong supportive evidence in HLA-B*27-transgenic rats [66, 67]. In other ERAP associated 

conditions it is plausible that similar disruption to the nature of peptide-HLA constructs underpin 

disease. 

 



  

 

Complementary to the pathogenic nature of over-active ERAP variants, a substantial overlap exists 

between disease risk SNPs and expression quantitative trait loci (eQTLs) associated with increased 

ERAP1 and ERAP2 transcript and protein expression [36]. Most staggering is the strong association 

with the null variant rs2248374(G) in ERAP2, protective for AS, that completely abolishes protein 

expression [47, 68]. Cell lines carrying the rs30187(T) risk polymorphism as well as the 

rs30187/rs17482078/rs10050860(T/C/C) risk haplotype have similarly been shown to exhibit higher 

ERAP1 protein and transcript expression relative to those expressing the protective alleles [57, 69]. 

Recently a thorough eQTL analysis of 1,221 genotyped and imputed variants spanning the 5q15 

locus confirmed that risk variants in linkage with rs30187 substantially increase ERAP1 transcript 

expression (lead eQTL rs39840 conferring a 34.3% increase in transcript levels) and ERAP2 transcript 

expression in the ~75% of individuals that do express ERAP2 (lead eQTL rs2927608 conferring a 

148% increase in transcript levels) [70]. Further, SNPs situated on the rs10050860 disease associated 

haplotype were shown to be strongly associated with the alternate expression of two ERAP1 

isoforms differing in the inclusion of exon 20, evidently due to their effect on isoform splicing. The 

most significant splice-altering disease-risk variant (rs7063, AS association P-value 1.3x10-41), 

situated between exon 19 and 20, drives strong preferential expression of the 19-exon transcript 

and significantly higher ERAP1 protein expression overall given the predominance of this protein 

isoform over all others [70]. Increased ERAP1 and ERAP2 expression likely exacerbates the effect of 

the overactive variants in these genes that tie them to a range of pathologies, varying in the site of 

immune driven damage but nevertheless underpinned by a similar immunogenetic architecture [71].  

 

In vivo, loss of ERAP1 expression also affects peptide handling and the HLA-B*27 peptidome. 

Homozygous deletion of Erap1 in HLA-B*27 transgenic rats affected approximately one-third of the 

B*27 peptidome but left most unchanged, suggesting that some of the HLA-B*27 immunopeptidome 

is not dependent on Erap1 processing. In this model, loss of Erap1 increased mean peptide length 

and increased the frequency of C-terminal hydrophobic residues and of N-terminal Ala, Ser, or Lys. 

The presence of ERAP1 on the other hand increased the frequency of C-terminal Lys and Arg, of Glu 

and Asp at intermediate residues, and of N-terminal Gly [72]. Changes in the function and expression 

of these aminopeptidases likely culminate in a peptide repertoire that is, by some means, 

immunogenic, or promote immune system activation by poorly tolerising cytotoxic lymphocytes with 

an immense capacity to elicit cell and tissue damage.  

 

Translating aminopeptidase biology to new drugs 



  

 

Whatever their mechanism(s) of action, the best characterised disease-associated variants of ERAP1 

implicated in AS result in a gain of function [39] implying that inhibiting ERAP1, and likely also ERAP2, 

function is an important avenue of drug development for treatment of this disease. While less is 

known about aminopeptidase biology in psoriasis and birdshot chorioretinopathy, ERAP drug 

targeting strategies in these diseases are also likely to be of value. The availability of ERAP1 crystal 

structures has enabled recent advances in development, and particularly rational design, of ERAP1/2 

inhibitors (Table 3 and Table 4) [73, 74].  Bestatin and tosedostat, two compounds that inhibit a 

broad spectrum of aminopeptidases including aminopeptidase N, have shown efficacy in Phase II 

clinical trials in the treatment of lung cancer and acute myeloid leukaemia, respectively [75, 76], 

demonstrating that the aminopeptidase family is targetable for clinical effect.  A number of screens 

have been performed to discover high potency inhibitors of IRAP [77-83], or ERAP1, ERAP2 and IRAP 

[73, 74, 84-87]. 

 

From the screens reported by the Stratikos group [73, 74] a compound designated DG013A has been 

identified with high potency against ERAP1 (IC50: 33 nM), ERAP2 (IC50: 11 nM) and IRAP (IC50: 30 nM) 

but low selectivity.  DG013A has also been shown to affect a number of cellular processes.  

Incubation of cells expressing HLA-B*27 with increasing amounts of DG013A results in greater levels 

of peptide-bound cell surface HLA-B*27 expression [73].  Similarly, cell surface presentation of the 

GSW11 epitope by CT26 cells increased with a dose-dependent inhibition by DG013A [73]. The 

presence of DG013A reduced CD107α expression from human CD56+CD3- NK cells incubated with 

an R528/Q730 mutant of ERAP1 [88].  DG013A also reduced RAW264.7 cell phagocytic activity in a 

dose dependent fashion and decreased IL-1, IL-6 and TNFα expression from K528/E730 ERAP1 

treated human peripheral blood mononuclear cells [88].  Also, DG013A was shown to reduce the 

ligation of KIR3DL2 to HLA-B*27 free heavy chains through the decrease in IL-2 production, and to 

decrease Th17 expansion and IL17A production from CD4+ T cells incubated with HLA-B*27 

expressing antigen presenting cells [89].  These results suggest that inhibition of the M1 

aminopeptidases may prove beneficial to treatment of diseases in which they are implicated. It is 

also important to note that ERAAP silencing in mouse lymphoma cells promoted NK cell-mediated 

anti0tumour effects [90] implying that ERAP silencing may have applications beyond inflammatory 

diseases. 

 

Targeting aminopeptidases in inflammatory diseases 

A challenge for the use of aminopeptidase inhibitors in treatment of chronic immune-mediated 

diseases will be ensuring specificity of those inhibitors such that all M1 aminopeptidases are not 



  

 

targeted. Non-specific targeting is likely to result in side-effects that may be manageable for short-

term treatment but which may pose greater risks in long-term treatment of chronic conditions. 

Encouragingly though humans carrying the loss of function variant of ERAP2 appear healthy and 

there are no reports of increased disease susceptibilities in this genetic cohort. ERAAP-/- mice 

appear to only display increased susceptibility to T. gondii [91] and some lymphocytic 

choriomeningitis virus (LCMV) [92] infections. One caveat of those animals being housed in 

controlled specific pathogen free environments must be considered. Importantly, a key difference 

between knockout transgenic experiments and in vivo pharmacological inhibition is the timing of the 

inhibition with respect to generation of immunological tolerance. Pioneering work by the Shastri 

group elegantly demonstrated that, in ERAAP—mice, MHC Class-I presents many unstable and 

immunogenic peptides, reflecting failures of tolerance mechanisms in these animals [93].  Drugs 

targeting ERAP proteins will not impact tolerance mechanisms in a fully developed immune system 

and are likely, therefore, to be less harmful to an individual than the effects seen in ERAAP-/- mice. 

 

ERAP1 and ERAP2 are expressed in many tumour types [94-97] but we do not yet understand what 

role(s) aminopeptidases might play in tumour growth or immune responses to cancer. In cervical 

cancer, for example, ERAP1 expression correlates with clinical outcome [97] but ERAP1 

polymorphisms do not contribute to genetic susceptibility to cervical cancer [98] so is altered ERAP1 

biology permissive of cervical cancer development or a potential biomarker of a failed immune 

response? ERAP1 variants are associated with elevated blood pressure [99] and the AS, psoriasis and 

birdshot chorioretinopathy risk variant of ERAP1 at rs31087 confers protection against hypertension 

[100] raising the likelihood that aminopeptidase inhibition will affect cardiovascular function. As long 

as doubts remain about the functions of aminopeptidases in health and disease careful screening 

should accompany any aminopeptidase-targeted clinical development programs.  

 

Strategies to target one or more aminopeptidases require careful validation in vitro and in vivo and a 

greater understanding of the precise physiological role(s) played by aminopeptidases in each 

disease. Humans carry nine M1 aminopeptidases and the exact physiological role of those is not yet 

clearly defined. For example, cell surface expression of MHC Class I free heavy chains has been 

reported to be both increased [101] and decreased [102] in monocytes in the presence of the AS 

protective variant 730Glu of ERAP1. Pre-clinical assessments of the effect of aminopeptidase 

inhibition on disease phenotypes also poses significant challenges. Few animal models exist for the 

chronic diseases in which aminopeptidases likely play important roles. Those that do exist have not 

been shown to be ERAP1 dependent to date. The HLA-B*27 rat, a widely-accepted model of some 



  

 

features of spondyloarthopathy, showed no clinical benefits of reduced ERAP1 expression [72]. 

Other commonly used animal models, including SKG mice [103], mice overexpressing TNF [104, 105] 

or IL-23 [106] are driven by pathogenic cytokines and are likely independent of peptide handling 

processes, although this has not been formally tested in such models. Similarly, models of psoriasis 

are unlikely to involve aminopeptidase-dependent mechanisms since most are chemically induced 

and phenocopy disease symptoms rather than immune processes. Perhaps the strongest candidate 

for a valuable pre-clinical screening model of aminopeptidase inhibitors is the HLA-A*29 transgenic 

mouse which spontaneously develops symptoms of birdshot chorioretinopathy [107]. 

Aminopeptidase dependency has not yet been demonstrated in this model but warrants further 

investigation. At a minimum the field would benefit from generation of animals expressing relevant 

human HLA transgenes, for example HLA-B*27, along with human ERAP1 and/or ERAP2. Such a tool 

would permit investigation of the effects of aminopeptidase inhibitors on peptide handling in the 

context of human HLA Class I biology and while also enabling screening of effects of aminopeptidase 

inhibition on tumour development, cardiovascular disease and response to infections. 

 

Conclusions 

There is convincing genetic evidence linking M1 aminopeptidases, particularly ERAP1 and ERAP2, 

with several chronic inflammatory diseases. Biochemical and immunological interrogation of 

aminopeptidase biology has described some ways in which genetics influences aminopeptidase 

activity, but much is still to be learnt about the genetic complexities of ERAP1 and ERAP2 and the 

shared and unique features of these enzymes. There is a strong need to develop animal models to 

allow better evaluation of how aminopeptidases function in vivo and to determine the whole animal 

consequences of inhibiting aminopeptidase functions. 
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Table 1: Summary of the crystal structures for ERAP1, ERAP2 and IRAP available in the PDB. 

 
aState describes which of the three conformational states the structure represents, the ‘open’, ‘closed’ or 
‘semi-closed’ conformations. 
 
 
 
 
 
 
 
 
 
 

Protein PDB ID Resolution (Å) Active Site Ligand Statea Notes Reference 

ERAP1 3MDJ 2.95 Bestatin Open  [19] 

ERAP1 3QNF 3 - Open  [18] 

ERAP1 2YD0 2.7 Bestatin Closed  [18] 

ERAP1 3RJO 2.3 - 
Open Truncated to 

Domains III and IV 
[108] 

ERAP1 5J5E 2.8 - 
Open Truncated to 

Domains III and IV 
[108] 

ERAP2 3SE6 3.08 Lysine Closed 
 

[22] 

ERAP2 4E36 3.22 Lysine Closed 
 

[55] 

ERAP2 4JBS 2.79 P52 Closed 
 

[73] 

ERAP2 5CU5 3.02 - Closed Zinc-free structure [109] 

ERAP2 5AB0 2.5 DG025 Closed 
 

[109] 

ERAP2 5AB2 2.73 GPI 

Closed Antigenic epitope 

sequence 

GPGRAFVTI 

[109] 

ERAP2 5J6S 2.8 6GA Closed 
 

[24] 

ERAP2 5K1V 2.9 6PX Closed 
 

[24] 

IRAP 4P8Q 3.02 UNK Semi Modelled as Alanine [20] 

IRAP 4PJ6 2.96 Lysine Semi 
 

[20] 

IRAP 4Z7I 3.31 DG025 Semi 
 

[23] 

IRAP 5C97 3.37 - Semi 
 

[23] 

IRAP 5MJ6 2.53 7O2 Closed 
 

[23] 



  

 

 
 
 
Table 2: Key 5q15 locus SNP associations with immune-mediated diseases 

 
* Disease associated amino acids are in boldface 
** Alleles are quotes as on the forward strand 
+
 1000 Genomes minor allele frequency 

#
 The ERAP2 SNP association reported with birdshot chorioretinopathy is with rs7705093, tagging rs2248374 

 
 
 
 
 
 
 
 
 
 
 
 
 

Gene SNP ID 
Hg19 

Position 
Amino Acid 
Position* 

Risk Allele 
(RA)** 

RA Frequency 
(ExAC) 

Functional Effect of Risk Allele Associated Conditions 

ERAP1 rs30187 96124330 Arg528Lys T 0.380 

Increased ERAP1 expression, increased rate of substrate trimming, 
increased destruction of peptides with ERAP1-sensitive P1 residues, 
increased production peptides with ERAP1-resistant P1 residues [32, 

57, 70] 

AS [9, 47], MS [14], psoriasis [110, 111], PsA 
[112] 

ERAP1 rs27044 96118852 Glu730Gln G 0.306 Unknown AS [9], psoriasis [113], PsA [112] 

ERAP1 rs17482078 96118866 Gln725Arg C 0.850 Increased rate of substrate trimming [32] AS [9] 

ERAP1 rs10050860 96122210 Asn575Asp C 0.845 In complete linkage disequilibrium with rs17482078 [32] AS [9] 

ERAP1 rs2287987 96129535 Val349Met T 0.846 Unknown AS [9] 

ERAP2 rs2549782 96231000 Lys392Asn T 0.547 Increased rate of substrate trimming [55] AS [47] 

ERAP2 rs2549794 96244549 Intronic C 0.340
+ 

Unknown Crohn’s disease [13] 

ERAP2 rs2248374 96235896 Intronic A 0.452 
ERAP2 expression relative to lack of expression [68], lower amount of 

peptide with N-terminal basic residues and decreased HLA-B*27 
peptidome affinity [56] 

AS [47], PsA [112], birdshot chorioretinopathy 
[29]

# 



  

 

 
Table 3: Summary of screen results for ERAP1, ERAP2 and/or IRAP inhibitors 

Class of inhibitor chemical 
structure 

IC50 range (µM) Reference 

ERAP1 ERAP2 IRAP  

<1 1-100 >100 <1 1-100 >100 <1 1-100 >100  

           

Benzopyran - - 3 - - 3 3 2 - [77] 

Disulfide cyclized 
tripeptide Angiotensin 

(Ang) IV analogue 

Nd1 nd 11 2 - [79] 

Macrocyclic analogues of 
AngIV 

nd nd 11 4 - [78] 

Benzopyran nd nd 4 19 23 [83] 

Arylsulfonamides nd nd - 14 5 [80] 

Small-molecule library2 nd nd 1 18 - [82] 

Arylsulfonamides nd nd 3 - - [81] 

Aminobenzamide - 4 7a  - 4 3 + 
4a 

- 9 2 [84] 

Phosphinic 
pseudopeptide transition 

state analogues3 

3 1 - 3 1 - 3 1 - [73] 

Diaminobenzoic acid 
derivatives 

2 24 16 + 
35a 

5 43 14 + 
15 a 

6 54 10 + 
7 a 

[85] 

Phosphonic acids 2 15 2 5 7 7 nd [87] 

Phosphinic acids - - 29 2 18 9 nd 

Phosphinic 
psuedotripeptides 

16 13 2 26 5 - 28 3 - [74] 

Virtual screening then 
testing 

1 3 49b - 1 1 - 1 1 [86] 

Notes: 
1. not determined. 
2. 10500 compound primary screen. 

3. Original DG013A article. 
a. No inhibition detected to 50 µM. 
b. Compounds with IC50 values> 25 µM
 
 
 
 
  



  

 

 
 
Table 4: IC50 values for key inhibitors identified in various screens 

Name IC50 (µM) Assays tested Reference 

ERAP1 ERAP2 IRAP 

      

Bestatin >5   L-AMC [114] 

Tosedostat >5   L-AMC [114] 

Purpurin ~10   L-AMC, in vivo angiogenesis in 
zebrafish 

[115] 

DG002A 0.52 0.547 0.218 L-AMC or R-AMC, HLA-B*27 
surface expression, GSW11 

epitope surface presentation 

[73] 

DG002B 0.513 0.571 0.344 [73] 

DG013A 0.033 0.011 0.03 [73] 

DG013B 3.6 1.7 2.2 [73] 

DG023 0.043 0.037 0.002 L-AMC or R-AMC [74] 

DG026 3.694 0.74 0.032 L-AMC or R-AMC, DC3-cell 
induced IL-2 production from T 

cells 

[74] 

Thimerosal 0.24 >50 >50 L-AMC, DC-cell induced IL-2 
production from T cells 

[86] 

L-AMC: L-leucine-7-amido-4-methyl coumarin; R-AMC: L-arginyl-7-amido-4-methyl coumarin  



  

 

 

Figure 1: Diagrammatic representation of the (A) closed and (B) open forms of ERAP1 and (C) the semi-

closed conformations of IRAP seen in the crystal structures of the proteins. The structures are shown as 

cartoons coloured by domain with DI blue, DII cyan, DIII light green and DIV orange. The active site zinc is 

shown in each structure as a grey sphere. Structures shown are (A) 2YD0, (B) 3MDJ and (C) 2P8Q. 

 

 


