12 research outputs found

    Toward a unified functional account of structural focus and negation in Hungarian

    Get PDF
    The goal of this paper is to provide a unified analysis of the function of various types of (structural) focus and the negative particle (used preverbally) in Hungarian. It is argued that the function of these elements (each inducing the inversion of verbal modifier and verb) is best understood with respect to the interpretation assigned to the verbal predicate in different contexts. By treating the verbal predicate as a schematic positive declarative clause (or “proto-statement”) in its default interpretation, it becomes possible to define the function of the elements concerned in terms of the kind of relation in which they stand with the proto-statement, the kind of relation in which the overall symbolic pattern (as a Gestalt) stands with the unmarked positive declarative clause type

    Pragmatic markers in Hungarian: Some introductory remarks

    Full text link

    Role of C-Terminal Domain and Membrane Potential in the Mobility of Kv1.3 Channels in Immune Synapse Forming T Cells

    No full text
    Voltage-gated Kv1.3 potassium channels are essential for maintaining negative membrane potential during T-cell activation. They interact with membrane-associated guanylate kinases (MAGUK-s) via their C-terminus and with TCR/CD3, leading to enrichment at the immunological synapse (IS). Molecular interactions and mobility may impact each other and the function of these proteins. We aimed to identify molecular determinants of Kv1.3 mobility, applying fluorescence correlation spectroscopy on human Jurkat T-cells expressing WT, C-terminally truncated (ΔC), and non-conducting mutants of mGFP-Kv1.3. ΔC cannot interact with MAGUK-s and is not enriched at the IS, whereas cells expressing the non-conducting mutant are depolarized. Here, we found that in standalone cells, mobility of ΔC increased relative to the WT, likely due to abrogation of interactions, whereas mobility of the non-conducting mutant decreased, similar to our previous observations on other membrane proteins in depolarized cells. At the IS formed with Raji B-cells, mobility of WT and non-conducting channels, unlike ΔC, was lower than outside the IS. The Kv1.3 variants possessing an intact C-terminus had lower mobility in standalone cells than in IS-engaged cells. This may be related to the observed segregation of F-actin into a ring-like structure at the periphery of the IS, leaving much of the cell almost void of F-actin. Upon depolarizing treatment, mobility of WT and ΔC channels decreased both in standalone and IS-engaged cells, contrary to non-conducting channels, which themselves caused depolarization. Our results support that Kv1.3 is enriched at the IS via its C-terminal region regardless of conductivity, and that depolarization decreases channel mobility

    IL-2 receptors preassemble and signal in the ER/Golgi causing resistance to antiproliferative anti-IL-2Rα therapies

    No full text
    Interleukin-2 (IL-2) and IL-15 play pivotal roles in T cell activation, apoptosis, and survival, and are implicated in leukemias and autoimmune diseases. Their heterotrimeric receptors share their β- and γc-chains, but have distinct α-chains. Anti-IL-2Rα (daclizumab) therapy targeting cell surface-expressed receptor subunits to inhibit T cell proliferation has only brought limited success in adult T cell leukemia/lymphoma (ATL) and in multiple sclerosis. We asked whether IL-2R subunits could already preassemble and signal efficiently in the endoplasmic reticulum (ER) and the Golgi. A combination of daclizumab and anti-IL-2 efficiently blocked IL-2-induced proliferation of IL-2-dependent wild-type (WT) ATL cells but not cells transfected with IL-2, suggesting that in IL-2-producing cells signaling may already take place before receptors reach the cell surface. In the Golgi fraction isolated from IL-2-producing ATL cells, we detected by Western blot phosphorylated Jak1, Jak3, and a phosphotyrosine signal attributed to the γc-chain, which occurred at much lower levels in the Golgi of WT ATL cells. We expressed EGFP- and mCherry-tagged receptor chains in HeLa cells to study their assembly along the secretory pathway. Confocal microscopy, Förster resonance energy transfer, and imaging fluorescence cross-correlation spectroscopy analysis revealed partial colocalization and molecular association of IL-2 (and IL-15) receptor chains in the ER/Golgi, which became more complete in the plasma membrane, further confirming our hypothesis. Our results define a paradigm of intracellular autocrine signaling and may explain resistance to antagonistic antibody therapies targeting receptors at the cell surface

    Factors influencing antimicrobial resistance and outcome of Gram-negative bloodstream infections in children

    No full text
    OBJECTIVE: The aim of this study was to collect data about pediatric Gram-negative bloodstream infections (BSI) to determine the factors that influence multidrug resistance (MDR), clinical course and outcome of children affected by Gram-negative sepsis. METHODS: In this observational, prospective, multicenter study we collected cases of pediatric Gram-negative BSI during a 2-year period. We analyzed epidemiological, microbiological and clinical factors that associated with acquisition of MDR infections and outcome. RESULTS: One-hundred and thirty-five BSI episodes were analyzed. Median age of children was 0.5 years (IQR 0.1-6.17, range 0-17 years). Predominant bacteria were Enterobacteriaceae (68.3 %), and Pseudomonas spp. (17.9 %). Multidrug resistance was detected in 45/134 cases (33.6 %), with the highest rates in Escherichia coli, Enterobacter and Pseudomonas spp. Acquisition of MDR pathogens was significantly associated with prior cephalosporin treatment, older age, admission to hemato-oncology unit, polymicrobial infections, higher rate of development of septic shock, and multiple organ failures. All-cause mortality was 17.9 %. Presence of septic shock at presentation and parenteral nutrition were associated with higher mortality. Pseudomonas spp., and Enterobacter spp. BSIs had the highest rate of mortality. Inappropriate empiric antibiotic therapy was more frequent in MDR patients, although not significantly associated with poor outcome. CONCLUSION: Rates of multidrug resistance and mortality in children with Gram-negative bloodstream infections remain high in our settings. Empiric broad-spectrum antibiotics and combination therapy could be recommended, especially in children with malignant diseases, patients admitted to the PICU, and for cases with septic shock, who have higher mortality risk
    corecore