7,226 research outputs found

    Thermochemical ablation of rocket nozzle insert materials Final report

    Get PDF
    Resistance of rocket nozzle throat insert materials to corrosion and meltin

    The potential therapeutic effects of creatine supplementation on body composition and muscle function in cancer

    Get PDF
    Low muscle mass in individuals with cancer has a profound impact on quality of life and independence and is associated with greater treatment toxicity and poorer prognosis. Exercise interventions are regularly being investigated as a means to ameliorate treatment-related adverse effects, and nutritional/supplementation strategies to augment adaptations to exercise are highly valuable. Creatine (Cr) is a naturally-occurring substance in the human body that plays a critical role in energy provision during muscle contraction. Given the beneficial effects of Cr supplementation on lean body mass, strength, and physical function in a variety of clinical populations, there is therapeutic potential in individuals with cancer at heightened risk for muscle loss. Here, we provide an overview of Cr physiology, summarize the evidence on the use of Cr supplementation in various aging/clinical populations, explore mechanisms of action, and provide perspectives on the potential therapeutic role of Cr in the exercise oncology setting

    Spreading of Latex Particles on a Substrate

    Full text link
    We have investigated both experimentally and theoretically the spreading behavior of latex particles deposited on solid substrates. These particles, which are composed of cross-linked polymer chains, have an intrinsic elastic modulus. We show that the elasticity must be considered to account for the observed contact angle between the particle and the solid substrate, as measured through atomic force microscopy techniques. In particular, the work of adhesion computed within our model can be significantly larger than that from the classical Dupr\'{e} formula.Comment: 7 pages, 7 figures, to appear in Europhys. Let

    Drying and cracking mechanisms in a starch slurry

    Get PDF
    Starch-water slurries are commonly used to study fracture dynamics. Drying starch-cakes benefit from being simple, economical, and reproducible systems, and have been used to model desiccation fracture in soils, thin film fracture in paint, and columnar joints in lava. In this paper, the physical properties of starch-water mixtures are studied, and used to interpret and develop a multiphase transport model of drying. Starch-cakes are observed to have a nonlinear elastic modulus, and a desiccation strain that is comparable to that generated by their maximum achievable capillary pressure. It is shown that a large material porosity is divided between pore spaces between starch grains, and pores within starch grains. This division of pore space leads to two distinct drying regimes, controlled by liquid and vapor transport of water, respectively. The relatively unique ability for drying starch to generate columnar fracture patterns is shown to be linked to the unusually strong separation of these two transport mechanisms.Comment: 9 pages, 8 figures [revised in response to reviewer comments

    Drying and cracking mechanisms in a starch slurry

    Get PDF
    Starch-water slurries are commonly used to study fracture dynamics. Drying starch-cakes benefit from being simple, economical, and reproducible systems, and have been used to model desiccation fracture in soils, thin film fracture in paint, and columnar joints in lava. In this paper, the physical properties of starch-water mixtures are studied, and used to interpret and develop a multiphase transport model of drying. Starch-cakes are observed to have a nonlinear elastic modulus, and a desiccation strain that is comparable to that generated by their maximum achievable capillary pressure. It is shown that a large material porosity is divided between pore spaces between starch grains, and pores within starch grains. This division of pore space leads to two distinct drying regimes, controlled by liquid and vapor transport of water, respectively. The relatively unique ability for drying starch to generate columnar fracture patterns is shown to be linked to the unusually strong separation of these two transport mechanisms.Comment: 9 pages, 8 figures [revised in response to reviewer comments

    Tests of a Semi-Analytical Case 1 and Gelbstoff Case 2 SeaWiFS Algorithm with a Global Data Set

    Get PDF
    A semi-analytical algorithm was tested with a total of 733 points of either unpackaged or packaged-pigment data, with corresponding algorithm parameters for each data type. The 'unpackaged' type consisted of data sets that were generally consistent with the Case 1 CZCS algorithm and other well calibrated data sets. The 'packaged' type consisted of data sets apparently containing somewhat more packaged pigments, requiring modification of the absorption parameters of the model consistent with the CalCOFI study area. This resulted in two equally divided data sets. A more thorough scrutiny of these and other data sets using a semianalytical model requires improved knowledge of the phytoplankton and gelbstoff of the specific environment studied. Since the semi-analytical algorithm is dependent upon 4 spectral channels including the 412 nm channel, while most other algorithms are not, a means of testing data sets for consistency was sought. A numerical filter was developed to classify data sets into the above classes. The filter uses reflectance ratios, which can be determined from space. The sensitivity of such numerical filters to measurement resulting from atmospheric correction and sensor noise errors requires further study. The semi-analytical algorithm performed superbly on each of the data sets after classification, resulting in RMS1 errors of 0.107 and 0.121, respectively, for the unpackaged and packaged data-set classes, with little bias and slopes near 1.0. In combination, the RMS1 performance was 0.114. While these numbers appear rather sterling, one must bear in mind what mis-classification does to the results. Using an average or compromise parameterization on the modified global data set yielded an RMS1 error of 0.171, while using the unpackaged parameterization on the global evaluation data set yielded an RMS1 error of 0.284. So, without classification, the algorithm performs better globally using the average parameters than it does using the unpackaged parameters. Finally, the effects of even more extreme pigment packaging must be examined in order to improve algorithm performance at high latitudes. Note, however, that the North Sea and Mississippi River plume studies contributed data to the packaged and unpackaged classess, respectively, with little effect on algorithm performance. This suggests that gelbstoff-rich Case 2 waters do not seriously degrade performance of the semi-analytical algorithm

    Reasons for Failure of Prevention of Mother-To-Child HIV Transmission in a Rural South African District Hospital

    Get PDF
    Further reduction of mother-to-child transmission (MTCT) of HIV requires improved understanding of the reasons for MTCT. We reviewed maternal and infant case notes for HIV positive infants diagnosed by polymerase chain reaction at Bethesda Hospital. Nineteen cases were analysed. Median gestation at first antenatal consultation (ANC) was 22.5 (interquartile range [IQR] 19.25–24). Eleven (57.9%) mothers were HIV positive at first ANC, whilst eight tested negative and later positive (2 antepartum, 6 postpartum). Median maternal CD4 was 408 cells/μL (IQR 318–531). Six (31.6%) received no antenatal antiretroviral therapy (ART) because they were diagnosed as HIV positive postpartum; 9 (47.3%) received antenatal ART and 3 (15.8%) were never initiated on ART. At 6 weeks postpartum, 5 infants (26.3%) were not on prophylactic nevirapine (NVP) because their mothers had not yet been diagnosed. Maternal seroconversion in pregnancy and breastfeeding, and possibly false-negative HIV tests, were important reasons for prevention of mother-to-child transmission (PMTCT) failure

    The influence of substrate roughness, patterning, curvature, and compliance in peeling problems

    Get PDF
    NMP is supported by the European Commission under the Graphene FET Flagship (WP14 'Polymer composites' No. 604391) and FET Proactive 'Neurofibres' grant No. 732344. FB is supported by 'Neurofibres' grant No. 732344
    • …
    corecore