96 research outputs found

    Nicorandil prevents endothelial dysfunction due to antioxidative effects via normalisation of NADPH oxidase and nitric oxide synthase in streptozotocin diabetic rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nicorandil, an anti-angina agent, reportedly improves outcomes even in angina patients with diabetes. However, the precise mechanism underlying the beneficial effect of nicorandil on diabetic patients has not been examined. We investigated the protective effect of nicorandil on endothelial function in diabetic rats because endothelial dysfunction is a major risk factor for cardiovascular disease in diabetes.</p> <p>Methods</p> <p>Male Sprague-Dawley rats (6 weeks old) were intraperitoneally injected with streptozotocin (STZ, 40 mg/kg, once a day for 3 days) to induce diabetes. Nicorandil (15 mg/kg/day) and tempol (20 mg/kg/day, superoxide dismutase mimetic) were administered in drinking water for one week, starting 3 weeks after STZ injection. Endothelial function was evaluated by measuring flow-mediated dilation (FMD) in the femoral arteries of anaesthetised rats. Cultured human coronary artery endothelial cells (HCAECs) were treated with high glucose (35.6 mM, 24 h) and reactive oxygen species (ROS) production with or without L-NAME (300 μM), apocynin (100 μM) or nicorandil (100 μM) was measured using fluorescent probes.</p> <p>Results</p> <p>Endothelial function as evaluated by FMD was significantly reduced in diabetic as compared with normal rats (diabetes, 9.7 ± 1.4%; normal, 19.5 ± 1.7%; <it>n </it>= 6-7). There was a 2.4-fold increase in p47<sup>phox </sup>expression, a subunit of NADPH oxidase, and a 1.8-fold increase in total eNOS expression in diabetic rat femoral arteries. Nicorandil and tempol significantly improved FMD in diabetic rats (nicorandil, 17.7 ± 2.6%; tempol, 13.3 ± 1.4%; <it>n </it>= 6). Nicorandil significantly inhibited the increased expressions of p47<sup>phox </sup>and total eNOS in diabetic rat femoral arteries. Furthermore, nicorandil significantly inhibited the decreased expression of GTP cyclohydrolase I and the decreased dimer/monomer ratio of eNOS. ROS production in HCAECs was increased by high-glucose treatment, which was prevented by L-NAME and nicorandil suggesting that eNOS itself might serve as a superoxide source under high-glucose conditions and that nicorandil might prevent ROS production from eNOS.</p> <p>Conclusions</p> <p>These results suggest that nicorandil improved diabetes-induced endothelial dysfunction through antioxidative effects by inhibiting NADPH oxidase and eNOS uncoupling.</p

    Regulating divergent transcriptomes through mrna splicing and its modulation using various small compounds

    Get PDF
    Human transcriptomes are more divergent than genes and contribute to the sophistication of life. This divergence is derived from various isoforms arising from alternative splicing. In addition, alternative splicing regulated by spliceosomal factors and RNA structures, such as the RNA G-quadruplex, is important not only for isoform diversity but also for regulating gene expression. Therefore, abnormal splicing leads to serious diseases such as cancer and neurodegenerative disorders. In the first part of this review, we describe the regulation of divergent transcriptomes using alternative mRNA splicing. In the second part, we present the relationship between the disruption of splicing and diseases. Recently, various compounds with splicing inhibitor activity were established. These splicing inhibitors are recognized as a biological tool to investigate the molecular mechanism of splicing and as a potential therapeutic agent for cancer treatment. Food-derived compounds with similar functions were found and are expected to exhibit anticancer effects. In the final part, we describe the compounds that modulate the messenger RNA (mRNA) splicing process and their availability for basic research and future clinical potential

    SUMOylation of DISC1: a potential role in neural progenitor proliferation in the developing cortex

    Get PDF
    DISC1 is a multifunctional, intracellular scaffold protein. At the cellular level, DISC1 plays a pivotal role in neural progenitor proliferation, migration, and synaptic maturation. Perturbation of the biological pathways involving DISC1 is known to lead to behavioral changes in rodents, which supports a clinical report of a Scottish pedigree in which the majority of family members with disruption of the DISC1 gene manifest depression, schizophrenia, and related mental conditions. The discrepancy between modest evidence in genetics and strong biological support for the role of DISC1 in mental conditions suggests a working hypothesis that regulation of DISC1 at the protein level, such as posttranslational modification, may play a role in the pathology of mental conditions. In this study, we report on the SUMOylation of DISC1. This posttranslational modification occurs on lysine residues where the small ubiquitin-related modifier (SUMO) and its homologs are conjugated to a large number of cellular proteins, which in turn regulates their subcellular distribution and protein stability. By using in silico, biochemical, and cell-biological approaches, we now demonstrate that human DISC1 is SUMOylated at one specific lysine 643 (K643). We also show that this residue is crucial for proper neural progenitor proliferation in the developing cortex

    5MHz PWM-controlled current-mode resonant DC-DC converter using GaN-FETs

    Get PDF
    In this paper, the method of the realization of a MHz level switching frequency DC-DC converter for high power-density is presented. For high power-density, Gallium Nitride field effect transistor (GaN-FET) and current-mode resonant DC-DC converter are adopted. In addition, the proposed pulse width modulation (PWM) control method which is suitable for the isolated current-mode resonant DC-DC converter operated at MHz level switching frequency, and the novel primary-side zero voltage switching (ZVS) turn on method for the proposed PWM control are presented. Some experiments have been done with 5MHz isolated DC-DC converter which has GaN-FET, and the total volume of the circuit is 16.14cm3. With the proposed PWM control method, input voltage range is 36-44V, and maximum load current range is 8A at Vi = 44V. The primary-side ZVS turn on is confirmed, and the maximum power-efficiency is 89.4%.7th International Power Electronics Conference, IPEC-Hiroshima - ECCE Asia 2014; Hiroshima; Japan; 18 May 2014 through 21 May 201

    Five-Megahertz PWM-Controlled Current-Mode Resonant DC?DC Step-Down Converter Using GaN-HEMTs

    Get PDF
    High power efficiency and high power density are required in regulated isolated dc-dc converters. In this paper, a novel pulsewidth modulation (PWM) control method that is suitable for an isolated current-mode resonant dc-dc converter operated at a megahertz-level switching frequency is proposed. The output voltage with the proposed method can be regulated with no additional components at a fixed switching frequency. In addition, the zero-voltage switching (ZVS) of primary-side switches at turn on can be maintained. The principle of the proposed method and the method of the ZVS operation in the proposed method are explained. Some experiments have been performed with a 5-MHz isolated step-down dc-dc converter using gallium nitride high-electron-mobility transistors; the output voltage is 12 V, and the total volume of the circuit is 16.14 cm3. With the proposed PWM control method, the input voltage range is 42-45.5 V, and the maximum load current range is 10 A at Vi = 45.5 V. The ZVS of the primary-side switches at turn on is confirmed in all experimental regions, and the maximum power efficiency is 89.2%

    High frequency PWM-controlled current-mode resonant DC-DC converter with boost conversion

    Get PDF
    In this paper, a new pulse width modulation (PWM) control method for the isolated current-mode resonant converter with a fixed switching frequency is presented. The circuit topology is the same as a conventional resonant converter with synchronous rectification and without any additional components. The control technique for the output voltage regulation is proposed with the unique PWM control for synchronously-rectifying switches. By using the transformer\u27s leakage inductance and the PWM control, the boost conversion can be realized. Also, the zero-voltage switching (ZVS) operation can be done for primary switches, simultaneously. Some experiments have been done with 5MHz isolated DC-DC converter which has Gallium Nitride field effect transistor (GaN-FET).2013 15th European Conference on Power Electronics and Applications, EPE 2013; Lille; France; 2 September 2013 through 6 September 201

    Bone Marrow Allograft Rejection Mediated by a Novel Murine NK Receptor, NKG2I

    Get PDF
    Natural killer (NK) cells mediate bone marrow allograft rejection. However, the molecular mechanisms underlying such a rejection remain elusive. In previous analyses, it has been shown that NK cells recognize allogeneic target cells through Ly-49s and CD94/NKG2 heterodimers. Here, we describe identification and characterization of a novel murine NK receptor, NKG2I, belonging to the NKG2 family. NKG2I, which was composed of 226 amino acids, showed ∼40% homology to the murine NKG2D and CD94 in the C-type lectin domain. Flow cytometric analysis with anti-NKG2I monoclonal antibody (mAb) revealed that expression of NKG2I was largely confined to NK and NKT cells, but was not seen in T cells. Furthermore, anti-NKG2I mAb inhibited NK cell–mediated cytotoxicity, whereas cross-linking of NKG2I enhanced interleukin 2– and interleukin 12–dependent interferon-γ production. Similarly, the injection of anti-NKG2I mAb before the allogeneic bone marrow transfer in vivo impinged on the function of NKG2I, resulting in the enhanced colony formation in the spleen. NKG2I is a novel activating receptor mediating recognition and rejection of allogeneic target cells

    Suppression of osteoclastogenesis via α2-adrenergic receptors

    Get PDF
    The sympathetic nervous system is known to regulate osteoclast development. However, the involvement of α2-adrenergic receptors (α2-ARs) in osteoclastogenesis is not well understood. In the present study, their potential role in osteoclastogenesis was investigated. Guanabenz, clonidine and xylazine were used as agonists of α2-ARs, while yohimbine and idazoxan were employed as antagonists. Using RAW264.7 pre-osteoclast and primary bone marrow cells, the mRNA expression of the osteoclast-related genes nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1), tartrate-resistant acid phosphatase (TRAP) and cathepsin K was evaluated following induction with receptor activator of nuclear factor κB ligand (RANKL). TRAP staining was also conducted to assess effects on osteoclastogenesis in mouse bone marrow cells in vitro. Administration of 5-20 µM guanabenz (P<0.01, for RANKL-only treatment), 20 µM clonidine (P<0.05, for RANKL-only treatment) and 20 µM xylazine (P<0.05, for RANKL-only treatment) attenuated RANKL-induced upregulation of NFATc1, TRAP and cathepsin K mRNA. Furthermore, the reductions in these mRNAs by 10 µM guanabenz and 20 µM clonidine in the presence of RANKL were attenuated by 20 µM yohimbine or idazoxan (P<0.05). The administration of 5-20 µM guanabenz (P<0.01, for RANKL-only treatment) and 10-20 µM clonidine (P<0.05, for RANKL-only treatment) also decreased the number of TRAP-positive multi-nucleated osteoclasts. Collectively, the present study demonstrates that α2-ARs may be involved in the regulation of osteoclastogenesis
    corecore