20 research outputs found
Selection of sensors by a new methodology coupling a classification technique and entropy criteria
Complex industrial processes invest a lot of money in sensors and automation devices to monitor and supervise the process in order to guarantee the production quality and the plant and operators safety. Fault detection is one of the multiple tasks of process monitoring and it critically depends on the sensors that measure the significant process variables. Nevertheless, most of the works on fault detection and diagnosis found in literature emphasis more on developing procedures to perform diagnosis given a set of sensors, and less on determining the actual location of sensors for efficient identification of faults. A methodology based on learning and classification techniques and on the information quantity measured by the Entropy concept, is proposed in order to address the problem of sensor location for fault identification. The proposed methodology has been applied to a continuous intensified reactor, the "Open Plate Reactor (OPR)", developed by Alfa Laval and studied at the Laboratory of Chemical Engineering of Toulouse. The different steps of the methodology are explained through its application to the carrying out of an exothermic reaction
El fin de la excepciĂłn humana
Esta reseña aborda los intereses de investigaciĂłn de Ana MarĂa Lozano, indagaciones, reflexiones y preocupaciones
que fueron vitales tanto para el planteamiento conceptual de la curadurĂa «El fin de la excepciĂłn humana» , como
para la selecciĂłn de los artistas que hacen parte de esta muestra que se realizĂł en la FundaciĂłn Gilberto Alzate
Avendaño âinstituciĂłn que se ha consolidado como uno de los centros artĂsticos y culturales mĂĄs importantes de
BogotĂĄâ, entre el 8 y 30 de septiembre de 2016
Surveillance de procédés à base de méthodes de classification : conception d'un outil d'aide pour la détection et le diagnostic des défaillances
The present work belongs to the field of decision support systems for complex process monitoring, such as chemical and petrochemical plants. Since it is not always possible to obtain a mathematical model for these processes, it is necessary to consider other approaches such as learning and classification methods, in order to identify their different operating modes (normal or faulty). We propose a strategy based on Data Mining techniques, which allows the construction of a discrete event model of the process behavior using historical and online data. This strategy consists on an offline learning stage for the elaboration of a first reference model. This model, in the form of a finite state automaton, must be validated and completed by the process expert. A second online stage consists in tracking the identified process states. A deviation is detected when a given number of observations are not recognized into any expected functional state. At this stage a new learning procedure is proposed in order to identify the nature of the deviation. The new resulting classes and information concerning the descriptors involved are presented to the expert as support for his diagnosis. A decision support software tool for monitoring processes using LAMDA classification algorithm has been developed based on the proposed strategy. LAMDA method uses Fuzzy logic theory and introduces the adequacy concept for the assignment of an element to a class. Within the context of CHEM European project the principal aspects of our work were tested on different industrial and pilot plants.Les travaux prĂ©sentĂ©s se situent dans le domaine de l'aide Ă la dĂ©cision pour la surveillance de systĂšmes complexes tels que les procĂ©dĂ©s chimiques. Pour de tels procĂ©dĂ©s il n'est pas toujours possible de disposer d'un modĂšle mathĂ©matique ou structurel du systĂšme considĂ©rĂ©. De ce fait, d'autres types d'approches telles que les mĂ©thodes de classification, doivent ĂȘtre envisagĂ©es pour l'identification des Ă©tats fonctionnels dans lesquels le systĂšme peut se trouver. Sur la base de telles mĂ©thodes notre travail prĂ©sente une stratĂ©gie permettant de construire, Ă partir de donnĂ©es historiques et de donnĂ©es rĂ©cupĂ©rĂ©es en ligne, un modĂšle discret (Ă©tats/transitions) du comportement du processus et d'identifier des situations anormales issues des dysfonctionnements. Cette stratĂ©gie consiste Ă gĂ©nĂ©rer un premier modĂšle de rĂ©fĂ©rence, sous la forme d'un automate Ă Ă©tats finis, du procĂ©dĂ© Ă partir d'un apprentissage, supervisĂ© ou non. Ce modĂšle est ensuite validĂ© et complĂ©tĂ© par l'expert. La reconnaissance en ligne permet de suivre l'Ă©volution temporelle des modes de fonctionnement dĂ©jĂ identifiĂ©s. Dans le cas oĂč une transition amĂšne Ă la non-reconnaissance d'un certain nombre d'Ă©lĂ©ments, c'est-Ă -dire Ă la dĂ©tection d'une dĂ©viation par rapport Ă un comportement connu, l'objectif est de caractĂ©riser cette nouvelle situation. Pour cela, nous proposons de faire un nouvel apprentissage hors ligne prenant en compte ces Ă©lĂ©ments non reconnus. Les nouvelles classes crĂ©Ă©es permettent, toujours en interaction avec l'expert, de fixer la nature de la dĂ©viation observĂ©e. Dans le cas d'une dĂ©faillance, une analyse portant sur les descripteurs et le profil des classes permet l'isolation de la dĂ©faillance. Ces informations sont transmises Ă l'opĂ©rateur pour l'assister dans son diagnostic. Un outil d'aide Ă la dĂ©cision pour la surveillance s'appuyant sur cette stratĂ©gie a Ă©tĂ© mis en place. Cet outil appelĂ© SALSA repose sur la mĂ©thode LAMDA. Il s'agit d'une mĂ©thode de classification avec apprent issage et reconnaissance de formes qui permet l'analyse de donnĂ©es multi-variables et qui utilise des notions de la logique floue pour introduire le concept d'adĂ©quation d'un Ă©lĂ©ment Ă une classe. Dans le cadre du projet europĂ©en CHEM les principaux aspects de nos travaux et les rĂ©sultats obtenus ont Ă©tĂ© illustrĂ©s sur des unitĂ©s industrielles de nature diffĂ©rente
Surveillance de procédés à base de méthodes de classification (conception d'un outil d'aide pour la détection et le diagnostic des défaillances)
Les travaux présentés se situent dans le domaine de l'aide à la décision pour la surveillance de systÚmes complexes tels que les procédés chimiques. Sur la base de méthodes pour l'interprétation de données (Data Mining), notre travail présente une stratégie permettant de construire, à partir de données historiques et de données récupérées en ligne, un modÚle discret (automate à états finis) du comportement du processus et d'identifier des situations anormales issues des dysfonctionnements. Cette stratégie consiste à générer un premier modÚle de référence à partir d'un apprentissage et d'un dialogue avec l'expert. La reconnaissance en ligne permet de suivre l'évolution temporelle des modes de fonctionnement déjà identifiés. Dans le cas de la détection d'une déviation (éléments non reconnus) par rapport à un comportement connu, l'objectif est de caractériser cette nouvelle situation. Pour cela, nous proposons de faire un nouvel apprentissage hors ligne. Les nouvelles classes créées permettent, toujours en interaction avec l'expert, de fixer la nature de la déviation observée. Une analyse portant sur les descripteurs et le profil des classes permet l'isolation d'une éventuelle défaillance. Ces informations sont transmises à l'opérateur pour l'assister dans son diagnostic. Un outil d'aide à la décision pour la surveillance s'appuyant sur cette stratégie a été mis en place. L'outil repose sur la méthode de classification LAMDA, qui permet l'analyse de données multi-variables et qui utilise des notions de la logique floue pour introduire le concept d'adéquation d'un élément à une classe. Les principaux aspects de nos travaux ont été illustrés sur des unités industriellesThe present work belongs to the field of decision support systems for complex process monitoring, such as chemical and petrochemical plants. Since it is not always possible to obtain a mathematical model of the functional states for these processes, it is necessary to consider other approaches such as learning and classification methods, in order to identify their different operating modes (normal or faulty). We propose a strategy, based on Data Mining methods, which allows the construction of a discrete event model of the process behavior using historical and online data. This strategy consists of an offline learning stage for the elaboration of a first reference model. This model, in the form of a finite state automaton, must be validated and completed by the process expert. A second online stage consists in tracking the identified process states. A deviation is detected when a given number of observations are not recognized into any expected functional state. At this stage a new learning procedure is proposed in order to identify the nature of the deviation. The new resulting classes and information concerning the descriptors are presented to the expert as support for his diagnosis. A decision support software tool (SALSA) for monitoring processes using LAMDA classification algorithm has been developed based on the proposed strategy. LAMDA method uses Fuzzy logic theory and introduces the adequacy concept for the assignment of an element to a class. The principal aspects of our work were tested on different industrial and pilot plantsINIST-CNRS (INIST), under shelf-number: RP 17272 / SudocSudocFranceF
Membership-margin based feature selection for mixed type and high-dimensional data: Theory and applications
International audienceThe present paper describes a new feature weighting method based on a membership margin. Distinctive properties of the proposed method include its capability to process problems characterized by mixed-type data (quantitative, qualitative and interval) as well as a huge number of features. The key idea is to map simultaneously all the features of different types into a common space; the membership space. Once all features are represented in a homogeneous space, a feature weighting task can be performed in unified way. This weighting approach is integrated here within a fuzzy classifier through a fuzzy rule weighted concept in order to improve its performance. Each antecedent fuzzy set in the fuzzy ifâthen rule is weighted to characterize the importance of each proposition and therefore its corresponding feature. Weight estimation process is based on membership margin maximization to estimate a fuzzy weight of each feature in the membership space. Experiments on low and high dimensional real-world datasets demonstrate that the proposed approach can improve significantly the performance of the fuzzy rule-based as well as other state of the art classifiers and can even outperform classical feature weighting approaches. In particular, we show that this approach can yield meaningful results on two real-world applications for cancer prognosis and industrial process diagnosis
Situation prediction based on fuzzy clustering for industrial complex processes
International audiencePrediction of process behavior is important and useful to understand the system status and to take early control actions during operation. This paper presents a fuzzy clustering approach for predicting situations (functional states) in complex process industries. The proposed methodology combines a static measurement, such as the result of a fuzzy classifier trained with historical process data, and an estimation algorithm based on Markovâs theory for discrete event systems. The situation prediction function is integrated into a process monitoring system without increasing the computational cost, which makes real-time implementation feasible. The monitoring strategy includes two principal stages: an offline stage for designing the fuzzy classifier and the predictor, and an online stage for identifying current process situations and for estimating predicted functional states. Thus, at each sample time, the results of a fuzzy classifier are used as inputs in the prediction procedure. An attractive feature of our proposed method, for situation prediction, is that it provides information about the evolution of the process. The proposed approach was tested on a monitoring system for a power transmission line, and also for monitoring a boiler subsystem of a steam generator. Experimental results indicate that our proposed technique in this paper is effective and can be used as a tool, for operators, to be used in industrial process decision making