105 research outputs found

    From classroom tutor to hypertext adviser: An evaluation

    Get PDF
    This paper describes a three‐year experiment to investigate the possibility of making economies by replacing practical laboratory sessions with courseware while attempting to ensure that the quality of the student learning experience did not suffer. Pathology labs are a central component of the first‐year medical undergraduate curriculum at Southampton. Activities in these labs had been carefully designed and they were supervised by lab demonstrators who were subject domain experts. The labs were successful in the eyes of both staff and students but were expensive to conduct, in terms of equipment and staffing. Year by year evaluation of the introduction of courseware revealed that there was no measurable difference in student performance as a result of introducing the courseware, but that students were unhappy about the loss of interaction with the demonstrators. The final outcome of this experiment was a courseware replacement for six labs which included a software online hypertext adviser. The contribution of this work is that it adds to the body of empirical evidence in support of the importance of maintaining dialogue with students when introducing courseware, and it presents an example of how this interaction might be achieved in software

    Persistence of adult learners in distance education.

    Get PDF
    The purpose of this thesis was to examine the relationship between persistence in distance education and resilience, life events, and external commitments. Previous studies in persistence in distance education have largely examined withdrawal and identified family, job and life circumstances as major reasons why students dropout or fail to complete courses. Recent literature has described resilience as a quality that characterizes individuals who, though exposed to significant stress and adversity in their lives, do not succumb to the educational and life failures predicted for them. Although resilience has not, to date, been extensively examined in distance education, it was believed to be a major factor affecting persistence and dropout behavior in distance education. The sample consisted of 121 randomly selected undergraduate students, between the age of 30 to 45, who were registered in their first undergraduate course at Athabasca University and who returned the previously mailed questionnaire packets. Data relating to gender and course completion was obtained from student records. Scores from the Resiliency Attitudes Scale (RAS), the Life Events Inventory (LEI), and one questionnaire relating to external commitments completed the data set. Analyses of variance and discriminate analysis revealed that four of the resiliency skills (relationships, general resilience, initiative, insight), and five of the resiliency sub-skills (attaching, persistence, valuing, recruiting, generating) were significantly correlated with persistence. No significant correlation was found for life events, gender, or previous experience with distance courses. Of the six external commitments included in the discriminate analysis, only work commitments was significantly correlated with persistence (p = 0.0247). This study correctly classified 66% of the students as persisters or non-persisters in their Athabasca University distance course

    Seeking the Recipe for Success in Distance Education: Lessons from a Nutrition Course

    Get PDF
    There is much debate as to how best to exploit the potential of the internet when designing distance education (DE) courses; the "formula for success" is still to be determined. In this Darwinian struggle for "market share" Athabasca University (AU) has established itself as the leading DE university in Canada. Courses at AU include four in nutrition. Enrollment growth has been rapid in recent years. We investigated factors that may be responsible for this success. We garnered the opinions of former nutrition students using a mailed questionnaire (response rate: 57.1%; 176 returned). We investigated the following factors with respect to the highest enrollment nutrition course: (1) why students took the course at AU (rather than a similar course at another university); (2) student opinions of the course; (3) student preferences for receiving course materials in a printed format or via a computer; and (4) student opinions of AU. The leading reason for taking the nutrition course by DE is work commitment, followed by family commitment, a preference for DE, a recommendation, and no other one was available. The learning materials for the course are print based. This appears to be important as only 4% of students prefer to receive their textbook via a computer rather than printed. Another factor is that AU is well respected by its students: only 11% feel that AU courses are of lower academic credibility than similar courses at other Canadian universities

    How a Diverse Research Ecosystem Has Generated New Rehabilitation Technologies: Review of NIDILRR’s Rehabilitation Engineering Research Centers

    Get PDF
    Over 50 million United States citizens (1 in 6 people in the US) have a developmental, acquired, or degenerative disability. The average US citizen can expect to live 20% of his or her life with a disability. Rehabilitation technologies play a major role in improving the quality of life for people with a disability, yet widespread and highly challenging needs remain. Within the US, a major effort aimed at the creation and evaluation of rehabilitation technology has been the Rehabilitation Engineering Research Centers (RERCs) sponsored by the National Institute on Disability, Independent Living, and Rehabilitation Research. As envisioned at their conception by a panel of the National Academy of Science in 1970, these centers were intended to take a “total approach to rehabilitation”, combining medicine, engineering, and related science, to improve the quality of life of individuals with a disability. Here, we review the scope, achievements, and ongoing projects of an unbiased sample of 19 currently active or recently terminated RERCs. Specifically, for each center, we briefly explain the needs it targets, summarize key historical advances, identify emerging innovations, and consider future directions. Our assessment from this review is that the RERC program indeed involves a multidisciplinary approach, with 36 professional fields involved, although 70% of research and development staff are in engineering fields, 23% in clinical fields, and only 7% in basic science fields; significantly, 11% of the professional staff have a disability related to their research. We observe that the RERC program has substantially diversified the scope of its work since the 1970’s, addressing more types of disabilities using more technologies, and, in particular, often now focusing on information technologies. RERC work also now often views users as integrated into an interdependent society through technologies that both people with and without disabilities co-use (such as the internet, wireless communication, and architecture). In addition, RERC research has evolved to view users as able at improving outcomes through learning, exercise, and plasticity (rather than being static), which can be optimally timed. We provide examples of rehabilitation technology innovation produced by the RERCs that illustrate this increasingly diversifying scope and evolving perspective. We conclude by discussing growth opportunities and possible future directions of the RERC program

    Transforming healthcare through regenerative medicine

    Get PDF
    Regenerative medicine therapies, underpinned by the core principles of rejuvenation, regeneration and replacement, are shifting the paradigm in healthcare from symptomatic treatment in the 20th century to curative treatment in the 21st century. By addressing the reasons behind the rapid expansion of regenerative medicine research and presenting an overview of current clinical trials, we explore the potential of regenerative medicine to reshape modern healthcare

    Measurement of the cosmic ray spectrum above 4×10184{\times}10^{18} eV using inclined events detected with the Pierre Auger Observatory

    Full text link
    A measurement of the cosmic-ray spectrum for energies exceeding 4×10184{\times}10^{18} eV is presented, which is based on the analysis of showers with zenith angles greater than 60∘60^{\circ} detected with the Pierre Auger Observatory between 1 January 2004 and 31 December 2013. The measured spectrum confirms a flux suppression at the highest energies. Above 5.3×10185.3{\times}10^{18} eV, the "ankle", the flux can be described by a power law E−γE^{-\gamma} with index Îł=2.70±0.02 (stat)±0.1 (sys)\gamma=2.70 \pm 0.02 \,\text{(stat)} \pm 0.1\,\text{(sys)} followed by a smooth suppression region. For the energy (EsE_\text{s}) at which the spectral flux has fallen to one-half of its extrapolated value in the absence of suppression, we find Es=(5.12±0.25 (stat)−1.2+1.0 (sys))×1019E_\text{s}=(5.12\pm0.25\,\text{(stat)}^{+1.0}_{-1.2}\,\text{(sys)}){\times}10^{19} eV.Comment: Replaced with published version. Added journal reference and DO

    Energy Estimation of Cosmic Rays with the Engineering Radio Array of the Pierre Auger Observatory

    Full text link
    The Auger Engineering Radio Array (AERA) is part of the Pierre Auger Observatory and is used to detect the radio emission of cosmic-ray air showers. These observations are compared to the data of the surface detector stations of the Observatory, which provide well-calibrated information on the cosmic-ray energies and arrival directions. The response of the radio stations in the 30 to 80 MHz regime has been thoroughly calibrated to enable the reconstruction of the incoming electric field. For the latter, the energy deposit per area is determined from the radio pulses at each observer position and is interpolated using a two-dimensional function that takes into account signal asymmetries due to interference between the geomagnetic and charge-excess emission components. The spatial integral over the signal distribution gives a direct measurement of the energy transferred from the primary cosmic ray into radio emission in the AERA frequency range. We measure 15.8 MeV of radiation energy for a 1 EeV air shower arriving perpendicularly to the geomagnetic field. This radiation energy -- corrected for geometrical effects -- is used as a cosmic-ray energy estimator. Performing an absolute energy calibration against the surface-detector information, we observe that this radio-energy estimator scales quadratically with the cosmic-ray energy as expected for coherent emission. We find an energy resolution of the radio reconstruction of 22% for the data set and 17% for a high-quality subset containing only events with at least five radio stations with signal.Comment: Replaced with published version. Added journal reference and DO

    Measurement of the Radiation Energy in the Radio Signal of Extensive Air Showers as a Universal Estimator of Cosmic-Ray Energy

    Full text link
    We measure the energy emitted by extensive air showers in the form of radio emission in the frequency range from 30 to 80 MHz. Exploiting the accurate energy scale of the Pierre Auger Observatory, we obtain a radiation energy of 15.8 \pm 0.7 (stat) \pm 6.7 (sys) MeV for cosmic rays with an energy of 1 EeV arriving perpendicularly to a geomagnetic field of 0.24 G, scaling quadratically with the cosmic-ray energy. A comparison with predictions from state-of-the-art first-principle calculations shows agreement with our measurement. The radiation energy provides direct access to the calorimetric energy in the electromagnetic cascade of extensive air showers. Comparison with our result thus allows the direct calibration of any cosmic-ray radio detector against the well-established energy scale of the Pierre Auger Observatory.Comment: Replaced with published version. Added journal reference and DOI. Supplemental material in the ancillary file
    • 

    corecore