269 research outputs found

    Ajitts: adaptive just-in-time transaction scheduling

    Get PDF
    Lecture Notes in Computer Science 7891, 2013Distributed transaction processing has benefited greatly from optimistic concurrency control protocols thus avoiding costly fine-grained synchronization. However, the performance of these protocols degrades significantly when the workload increases, namely, by leading to a substantial amount of aborted transactions due to concurrency conflicts. Our approach stems from the observation that when the abort rate increases with the load as already executed transactions queue for longer periods of time waiting for their turn to be certified and committed. We thus propose an adaptive algorithm for judiciously scheduling transactions to minimize the time during which these are vulnerable to being aborted by concurrent transactions, thereby reducing the overall abort rate. We do so by throttling transaction execution using an adaptive mechanism based on the locally known state of globally executing transactions, that includes out-of-order execution. Our evaluation using traces from the industry standard TPC-E workload shows that the amount of aborted transactions can be kept bounded as system load increases, while at the same time fully utilizing system resources and thus scaling transaction processing throughput.(undefined

    Processing Transactions over Optimistic Atomic Broadcast Protocols

    Get PDF
    Atomic broadcast primitives allow fault-tolerant cooperation between sites in adistributed system. Unfortunately, the delay incurred before a message can be delivered makes it difficult to implement high performance, scalable applications on top of atomic broadcast primitives. Recently, a new approach has been proposed which, based on optimistic assumptions about the communication system, reduces the average delay for message delivery. In this paper, we develop this idea further and present a replicated database architecture that employs the new atomic broadcast primitive in such a way that the coordination phase of the atomic broadcast is fully overlapped with th

    Drosophila tan Encodes a Novel Hydrolase Required in Pigmentation and Vision

    Get PDF
    Many proteins are used repeatedly in development, but usually the function of the protein is similar in the different contexts. Here we report that the classical Drosophila melanogaster locus tan encodes a novel enzyme required for two very different cellular functions: hydrolysis of N-β-alanyl dopamine (NBAD) to dopamine during cuticular melanization, and hydrolysis of carcinine to histamine in the metabolism of photoreceptor neurotransmitter. We characterized two tan-like P-element insertions that failed to complement classical tan mutations. Both are inserted in the 5′ untranslated region of the previously uncharacterized gene CG12120, a putative homolog of fungal isopenicillin-N N-acyltransferase (EC 2.3.1.164). Both P insertions showed abnormally low transcription of the CG12120 mRNA. Ectopic CG12120 expression rescued tan mutant pigmentation phenotypes and caused the production of striking black melanin patterns. Electroretinogram and head histamine assays indicated that CG12120 is required for hydrolysis of carcinine to histamine, which is required for histaminergic neurotransmission. Recombinant CG12120 protein efficiently hydrolyzed both NBAD to dopamine and carcinine to histamine. We conclude that D. melanogaster CG12120 corresponds to tan. This is, to our knowledge, the first molecular genetic characterization of NBAD hydrolase and carcinine hydrolase activity in any organism and is central to the understanding of pigmentation and photoreceptor function

    Bis(triphenyl­guanidinium) tetra­chlorido­cuprate(II)

    Get PDF
    The structure of the title compound, (C19H18N3)2[CuCl4], consists of square-planar [CuCl4]2− anions and triphenyl­guanidinium cations. The CuII ion occupies a crystallographic inversion centre. In the cation, the dihedral angles between the phenyl rings and the plane defined by the central guanidinium fragment are in the range 51.9 (4)–64.4 (3)°. N—H⋯Cl hydrogen bonds assemble the ions into infinite chains running along the b axis

    Intracoronary infusion of mononuclear cells after PCI-treated myocardial infarction and arrhythmogenesis: is it safe?

    Get PDF
    To reduce long-term morbidity after revascularised acute myocardial infarction, different therapeutic strategies have been investigated. Cell therapy with mononuclear cells from bone marrow (BMMC) or peripheral blood (PBMC) has been proposed to attenuate the adverse processes of remodelling and subsequent heart failure. Previous trials have suggested that cell therapy may facilitate arrhythmogenesis. In the present substudy of the HEBE cell therapy trial, we investigated whether intracoronary cell therapy alters the prevalence of ventricular arrhythmias after 1 month or the rate of severe arrhythmogenic events (SAE) in the first year. In 164 patients of the trial we measured function and infarct size with cardiovascular magnetic resonance (CMR) imaging. Holter registration was performed after 1 month from which the number of triplets (3 successive PVCs) and ventricular tachycardias (VT, ≥4 successive PVCs) was assessed. Thirty-three patients (20%) showed triplets and/or VTs, with similar distribution amongst the groups (triplets: control n = 8 vs. BMMC n = 9, p = 1.00; vs. PBMC n = 10, p = 0.67. VT: control n = 9 vs. BMMC n = 9, p = 0.80; vs. PBMC n = 11, p = 0.69). SAE occurred in 2 patients in the PBMC group and 1 patient in the control group. In conclusion, intracoronary cell therapy is not associated with an increase in ventricular arrhythmias or SAE

    Body mass index related electrocardiographic findings in healthy young individuals with a normal body mass index

    Get PDF
    IntroductionAn increased body mass index (BMI) (>25 kg/m2) is associated with a wide range of electrocardiographic changes. However, the association between electrocardiographic changes and BMI in healthy young individuals with a normal BMI (18.5–25 kg/m2) is unknown. The aim of this study was to evaluate the association between BMI and electrocardiographic parameters.MethodsData from 1,290 volunteers aged 18 to 30 years collected at our centre were analysed. Only subjects considered healthy by a physician after review of collected data with a normal BMI and in sinus rhythm were included in the analysis. Subjects with a normal BMI (18.5–25 kg/m2) were divided into BMI quartiles analysis and a backward multivariate regression analysis with a normal BMI as a continuous variable was performed.ResultsMean age was 22.7 ± 3.0 years, mean BMI was 22.0, and 73.4% were male. There were significant differences between the BMI quartiles in terms of maximum P-wave duration, P-wave balance, total P-wave area in lead V1, PR-interval duration, and heart axis. In the multivariate model maximum P-wave duration (standardised coefficient (SC) = +0.112, P P-wave balance in lead V1 (SC = +0.072, P P P ConclusionIncreased BMI was related with discrete electrocardiographic alterations including an increased P-wave duration, increased P-wave balance, a leftward shift of the heart axis, and decreased Sokolow-Lyon voltage on a standard twelve lead electrocardiogram in healthy young individuals with a normal BMI.Medicinal Chemistr
    corecore