127 research outputs found

    The Research on Dynamic Rules of Crack Extension during Hydraulic Fracturing for Oil Shale In-Situ Exploitation

    Get PDF
    AbstractIt is a tough problem of low permeability for in-situ exploiting oil shale, while improving low permeability by hydraulic fracturing can generate permeable belts, and this is vital importance for oil exploitation. According to the layer property of oil shale, making full use of cohesive element to simulate, it established mathematical models for hydraulic fracturing and its fracturing rules, then conducted 3D numerical simulation. We can get: the shape of fractures is oval, and fractures extend along different directions are different, due to anisotropic property of oil shale and geostatic stress influenced, shown as from fig.9 to fig.10; the leak-off flow rate of fracturing fluid rises, reduces, and tends to a fixed value shown in fig.11; fracture opening is dependant on the volume and injection velocity of fluid injection and the rules of damage evolution and fracturing opening refer to fig.5, fig.6 and fig.13

    EBVCR: A Energy Balanced Virtual Coordinate Routing in Wireless Sensor Networks

    Get PDF
    AbstractGeographic routing can provide efficient routing at a fixed overhead. However, the performance of geographic routing is impacted by physical voids, and localization errors. Accordingly, virtual coordinate systems (VCS) were proposed as an alternative approach that is resilient to localization errors and that naturally routes around physical voids. However, since VCS faces virtual anomalies,existing geographic routing can’t work to banlance energy efficiently. Moreover, there are no effective complementary routing algorithm that can be used to address energy balance.In this paper we present An Energy Balanced virtual coordinate Routing in Wireless Sensor Networks(EBVCR),which combines both distance- and direction-based strategies in a flexible manner, is Proposed to resolve energy balance of Geographic routing in VCS .Our simulation results show that the proposed algorithm outperforms the best existing solution, over a variety of network densities and scenarios

    Experimental investigation of rotordynamic coefficients for the labyrinth seals with and without shunt injection

    Get PDF
    Shunt injection serves an important role in the labyrinth seal static and rotordynamic characteristics which are important in the prediction of turbomachinery stability. This paper analyzed how the shunt injection affects the seal rotordynamic characteristics, and presented an improved impedance method based on unbalanced synchronous excitation to identify the rotordynamic coefficients of labyrinth seals on a rotor test rig. The influences of the rotational speed and the inlet/outlet pressure ratio on the rotordynamic characteristics of shunt injection seals with and without shunt injection were identified and analyzed. The experimental results reveal that all the seal rotordynamic coefficients increase with the rotational speed, and the inlet/outlet pressure ratio. The shunt injection contributes to decreasing the seal cross-coupled stiffness, and increasing the direct damping. The shunt injection plays an important role in decreasing the effective stiffness coefficient, and increasing the effective damping coefficient. The shunt injection can effectively improve the rotor stability. The experimental results lay the foundation for designing the annular seals with shunt injection

    New insights into the impact of polystyrene micro/nanoplastics on the nutritional quality of marine jacopever (Sebastes schlegelii)

    Get PDF
    Microplastics (MPs) and nanoplastics (NPs) are ubiquitous in the marine environments due to the wide use and mismanagement of plastics. However, the effect of MPs/NPs on the nutrition quality of economic species is poorly understood, and their underlying mechanisms remained unclear. We therefore investigated the impacts of polystyrene MPs/NPs on the nutrition composition of marine jacopever Sebastes schlegelii from the perspective of assimilation and metabolism. Results showed that NPs reduced more nutrition quality than MPs. Despite no notable impact on intestinal microbiota function, MPs/NPs influenced the assimilation of fish through intestinal damage. Furthermore, NPs induced greater damage to hepatocyte metabolism than MPs, caused by hepatocyte uptake through membrane protein pumps/channels and clathrin/caveolin-mediated endocytosis for NPs, while through phagocytosis/pinocytosis for MPs. NPs triggered more cell apoptosis signals in Ferroptosis and FoxO signaling pathways than MPs, destroying mitochondria structure. Compared with MP treatments, a significant upregulation of genes (PRODH and SLC25A25A) associated with the electron transfer chain of mitochondria was detected in the NP treatments, influencing the tricarboxylic acid cycle and interfering with liver metabolism of proteins, fatty acid, glycerol phospholipids, and carbohydrates. This work provides new insights into the potential impacts of MPs/NPs on the quality and safety of seafood.publishedVersio

    Simultaneous removal of ammonia and phosphate by electro-oxidation and electrocoagulation using RuO2–IrO2/Ti and microscale zero-valent iron composite electrode

    Get PDF
    Electro-oxidation using RuO2–IrO2/Ti plate anode and electrocoagulation using iron plate anode were widely applied to remove ammonia and phosphate in an aquatic environment, respectively. In this work, we designed magnetically bound ZVI microparticles on RuO2–IrO2/Ti plate as a composite electrode for the simultaneous removal of ammonia and phosphate from aqueous solution via combined EO and EC (EO/EC) processes. We present a series of experiments to study such simultaneous removal under an electric field via the EO/EC process. In the electrochemical unit, mZVI-RuO2-IrO2/Ti, mZVI-graphite, and RuO2–IrO2/Ti electrodes were used as anodes. The influence of applied voltage, initial pH, zero-valent iron dosage, reaction temperature, and organic compounds on the EO/EC process was also examined. Ammonia and phosphate could be completely removed at an applied voltage of 10β€―V, pH of 7, zero-valent iron dosage of 0.1β€―g, and reaction temperature of 35β€―Β°C using mZVI-RuO2-IrO2/Ti anode when influent ammonia and phosphate concentrations is 200 and 100β€―mgβ€―Lβˆ’1. Ammonia degradation was consistent with pseudo-zero-order kinetic model. The characterization was analyzed by scanning electron microscope-energy dispersive spectrometer (SEM-EDS), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Hence, the mZVI-RuO2-IrO2/Ti electrode can be used for efficient simultaneous removal of ammonia and phosphate

    Treatment of landfill leachate using magnetically attracted zero-valent iron powder electrode in an electric field

    Get PDF
    This study combined electro-oxidation (EO) and electrocoagulation (EC) process (EO/EC) to treat landfill leachate by using RuO2-IrO2/Ti plate and microscale zero-valent iron powder composite anode. EO was achieved by direct oxidation and indirect oxidation on RuO2-IrO2/Ti plate, whereas EC was achieved using iron powder to lose electrons and produce coagulants in situ. The influences of variables including type of anode material, applied voltage, zero-valent iron dosage, interelectrode gap, and reaction temperature on EO/EC were evaluated. Results showed that at an applied voltage of 10 V, zero-valent iron dosage of 0.2 g, interelectrode gap of 1 cm, and non-temperature-controlled mode, the removal efficiencies were 72.5% for total organic carbon (TOC), 98.5% for ammonia, and 98.6% for total phosphorus (TP). Some heavy metals and hardness were also removed. Further analysis indicated that the removal of TOC, ammonia, and TP followed pseudo-first order, pseudo-zero order, and pseudo-second order kinetic models, respectively. Other characteristics were examined by scanning electron microscopy–energy dispersive spectrometry, X-ray diffraction, and X-ray photoelectron spectroscopy. Overall, our results showed that EO/EC can be used to efficiently remove organic matter, ammonia, TP, and heavy metals from landfill leachate

    Bayesian lasso binary quantile regression

    Get PDF
    In this paper, a Bayesian hierarchical model for variable selection and estimation in the context of binary quantile regression is proposed. Existing approaches to variable selection in a binary classification context are sensitive to outliers, heteroskedasticity or other anomalies of the latent response. The method proposed in this study overcomes these problems in an attractive and straightforward way. A Laplace likelihood and Laplace priors for the regression parameters are proposed and estimated with Bayesian Markov Chain Monte Carlo. The resulting model is equivalent to the frequentist lasso procedure. A conceptional result is that by doing so, the binary regression model is moved from a Gaussian to a full Laplacian framework without sacrificing much computational efficiency. In addition, an efficient Gibbs sampler to estimate the model parameters is proposed that is superior to the Metropolis algorithm that is used in previous studies on Bayesian binary quantile regression. Both the simulation studies and the real data analysis indicate that the proposed method performs well in comparison to the other methods. Moreover, as the base model is binary quantile regression, a much more detailed insight in the effects of the covariates is provided by the approach. An implementation of the lasso procedure for binary quantile regression models is available in the R-package bayesQR

    Molecular Cloning and Characterization of Two Genes Encoding Dihydroflavonol-4-Reductase from Populus trichocarpa

    Get PDF
    Dihydroflavonol 4-reductase (DFR, EC 1.1.1.219) is a rate-limited enzyme in the biosynthesis of anthocyanins and condensed tannins (proanthocyanidins) that catalyzes the reduction of dihydroflavonols to leucoanthocyanins. In this study, two full-length transcripts encoding for PtrDFR1 and PtrDFR2 were isolated from Populus trichocarpa. Sequence alignment of the two PtrDFRs with other known DFRs reveals the homology of these genes. The expression profile of PtrDFRs was investigated in various tissues of P. trichocarpa. To determine their functions, two PtrDFRs were overexpressed in tobacco (Nicotiana tabacum) via Agrobacterium-mediated transformation. The associated color change in the flowers was observed in all 35S:PtrDFR1 lines, but not in 35S:PtrDFR2 lines. Compared to the wild-type control, a significantly higher accumulation of anthocyanins was detected in transgenic plants harboring the PtrDFR1. Furthermore, overexpressing PtrDFR1 in Chinese white poplar (P. tomentosa Carr.) resulted in a higher accumulation of both anthocyanins and condensed tannins, whereas constitutively expressing PtrDFR2 only improved condensed tannin accumulation, indicating the potential regulation of condensed tannins by PtrDFR2 in the biosynthetic pathway in poplars

    The 5th International Conference on Biomedical Engineering and Biotechnology (ICBEB 2016)

    Get PDF

    TSP-1 Secreted by Bone Marrow Stromal Cells Contributes to Retinal Ganglion Cell Neurite Outgrowth and Survival

    Get PDF
    BACKGROUND: Bone marrow stromal cells (BMSCs) are pluripotent and thereby a potential candidate for cell replacement therapy for central nervous system degenerative disorders and traumatic injury. However, the mechanism of their differentiation and effect on neural tissues has not been fully elucidated. This study evaluates the effect of BMSCs on neural cell growth and survival in a retinal ganglion cell (RGCs) model by assessing the effect of changes in the expression of a BMSC-secreted protein, thrombospondin-1 (TSP-1), as a putative mechanistic agent acting on RGCs. METHODS AND FINDINGS: The effect of co-culturing BMSCs and RGCs in vitro was evaluated by measuring the following parameters: neurite outgrowth, RGC survival, BMSC neural-like differentiation, and the effect of TSP-1 on both cell lines under basal secretion conditions and when TSP-1 expression was inhibited. Our data show that BMSCs improved RGC survival and neurite outgrowth. Synaptophysin, MAP-2, and TGF-beta expression are up-regulated in RGCs co-cultured with BMSCs. Interestingly, the BMSCs progressively displayed neural-like morphology over the seven-day study period. Restriction display polymerase chain reaction (RD-PCR) was performed to screen for differentially expressed genes in BMSCs cultured alone or co-cultured with RGCs. TSP-1, a multifactorial extracellular matrix protein, is critically important in the formation of neural connections during development, so its function in our co-culture model was investigated by small interfering RNA (siRNA) transfection. When TSP-1 expression was decreased with siRNA silencing, BMSCs had no impact on RGC survival, but reduced neurite outgrowth and decreased expression of synaptophysin, MAP-2 and TGF-beta in RGCs. Furthermore, the number of BMSCs with neural-like characteristics was significantly decreased by more than two-fold using siRNA silencing. CONCLUSIONS: Our data suggest that the TSP-1 signaling pathway might have an important role in neural-like differentiation in BMSCs and neurite outgrowth in RGCs. This study provides new insights into the potential reparative mechanisms of neural cell repair
    • …
    corecore