491 research outputs found
Influence of the Characteristics of the STM-tip on the Electroluminescence Spectra
We analyze the influence of the characteristics of the STM-tip (applied
voltage, tip radius) on the electroluminescence spectra from an STM-tip-induced
quantum dot taking into account the many-body effects. We find that positions
of electroluminescence peaks, attributed to the electron-hole recombination in
the quantum dot, are very sensitive to the shape and size of the confinement
potential as determined by the tip radius and the applied voltage. A critical
value of the tip radius is found, at which the luminescence peak positions as a
function of the tip radius manifest a transition from decreasing behavior for
smaller radii to increasing behavior for larger radii. We find that this
critical value of the tip radius is related to the confinement in the lateral
and normal direction.Comment: 15 pages, 5 figure
Dimensionality of charge transport in organic field-effect transistors
Application of a gate bias to an organic field-effect transistor leads to accumulation of charges in the organic semiconductor within a thin region near the gate dielectric. An important question is whether the charge transport in this region can be considered two-dimensional, or whether the possibility of charge motion in the third dimension, perpendicular to the accumulation layer, plays a crucial role. In order to answer this question we have performed Monte Carlo simulations of charge transport in organic field-effect transistor structures with varying thickness of the organic layer, taking into account all effects of energetic disorder and Coulomb interactions. We show that with increasing thickness of the semiconductor layer the source-drain current monotonically increases for weak disorder, whereas for strong disorder the current first increases and then decreases. Similarly, for a fixed layer thickness the mobility may either increase or decrease with increasing gate bias. We explain these results by the enhanced effect of state filling on the current for strong disorder, which competes with the effects of Coulomb interactions and charge motion in the third dimension. Our conclusion is that apart from the situation of a single monolayer, charge transport in an organic semiconductor layer should be considered three-dimensional, even at high gate bias
Scaling Of The Coulomb Energy Due To Quantum Fluctuations In The Charge Of A Quantum Dot
The charging energy of a quantum dot is measured through the effect of its
potential on the conductance of a second dot. This technique allows a
measurement of the scaling of the dot's charging energy with the conductance of
the tunnel barriers leading to the dot. We find that the charging energy scales
quadratically with the reflection probability of the barriers. In a second
experiment we study the transition from a single to a double-dot which exhibits
a scaling behavior linear in the reflection probability. The observed
power-laws agree with a recent theory.Comment: 5 pages, uuencoded and compressed postscript file, with figure
Photoluminescence investigations of 2D hole Landau levels in p-type single Al_{x}Ga_{1-x}As/GaAs heterostructures
We study the energy structure of two-dimensional holes in p-type single
Al_{1-x}Ga_{x}As/GaAs heterojunctions under a perpendicular magnetic field.
Photoluminescence measurments with low densities of excitation power reveal
rich spectra containing both free and bound-carrier transitions. The
experimental results are compared with energies of valence-subband Landau
levels calculated using a new numerical procedure and a good agreement is
achieved. Additional lines observed in the energy range of free-carrier
recombinations are attributed to excitonic transitions. We also consider the
role of many-body effects in photoluminescence spectra.Comment: 13 pages, 10 figures, accepted to Physical Review
Charge transport and trapping in Cs-doped poly(dialkoxy-p-phenylene vinylene) light-emitting diodes
Al/Cs/MDMO-PPV/ITO (where MDMO-PPV stands for poly[2-methoxy-5-(3'-7'-dimethyloctyloxy)-1,4phenylene vinylene] and ITO is indium tin oxide) light-emitting diode (LED) structures, made by physical vapor deposition of Cs on the emissive polymer layer, have been characterized by electroluminescence, current-voltage, and admittance spectroscopy. Deposition of Cs is found to improve the balance between electron and hole currents, enhancing the external electroluminescence efficiency from 0.01 cd A-1 for the bare Al cathode to a maximum of 1.3 cd A-1 for a Cs coverage of only 1.5×1014 atoms/cm2. By combining I-V and admittance spectra with model calculations, in which Cs diffusion profiles are explicitly taken into account, this effect could be attributed to a potential drop at the cathode interface due to a Cs-induced electron donor level 0.61 eV below the lowest unoccupied molecular orbital. In addition, the admittance spectra in the hole-dominated regime are shown to result from space-charge-limited conduction combined with charge relaxation in trap levels. This description allows us to directly determine the carrier mobility, even in the presence of traps. In contrast to recent literature, we demonstrate that there is no need to include dispersive transport in the description of the carrier mobility to explain the excess capacitance that is typically observed in admittance spectra of p-conjugated materials
Exchange interaction in p-type GaAs/Al_{x}Ga_{1-x}As heterostructures studied by magnetotransport
Low-temperature magnetotransport experiments have been performed on a p-type GaAs/AlxGa1-xAs quantum well. From activation measurements on Shubnikov–de Haas conduction minima it was found that exchange interactions can be of great importance for both odd and even filling factors and strongly influence the observed periodicity. Furthermore, it was found that the temperature dependence of Shubnikov–de Haas oscillations in the low-magnetic-field regime could not be explained within a single-particle model based on a solution of the full Luttinger Hamiltonian in a magnetic field. Numerical simulations of Shubnikov–de Haas spectra, based on a model that treats hole exchange interactions in a simplified manner, show unambiguously that exchange driven enhancement of hole "spin" splittings are extremely important at magnetic fields as low as 1.5 T. Also, the inclusion of a valence-band warping in the calculations is shown to be essential. Qualitatively, most experimental observations could be described within the presented model. Our results imply that, in any hole system, the effective masses obtained from temperature-dependent SdH measurements are to be treated with extreme care as they can deviate from their single-particle value by as much as a factor of 2
Electron transport through double quantum dots
Electron transport experiments on two lateral quantum dots coupled in series
are reviewed. An introduction to the charge stability diagram is given in terms
of the electrochemical potentials of both dots. Resonant tunneling experiments
show that the double dot geometry allows for an accurate determination of the
intrinsic lifetime of discrete energy states in quantum dots. The evolution of
discrete energy levels in magnetic field is studied. The resolution allows to
resolve avoided crossings in the spectrum of a quantum dot. With microwave
spectroscopy it is possible to probe the transition from ionic bonding (for
weak inter-dot tunnel coupling) to covalent bonding (for strong inter-dot
tunnel coupling) in a double dot artificial molecule. This review on the
present experimental status of double quantum dot studies is motivated by their
relevance for realizing solid state quantum bits.Comment: 32 pages, 31 figure
- …
