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Abstract 

We used a sample consisting of two quanturn dots, defined by rnetalic top gates in a high 
rnobility GaAs-AlxGa1_xAs heterostructure, to study interactions between nearby quanturn 
dots. 
We present the first experimental data on stochastic Coulomb blockade. This effect occurs 
when two dots are placed electricaly in series. We found that its thermal breakdown is 
linear in T, if ksT< <é!C, as can qualitatively be understood in terms of thermal 
smearing of resonance lines. 
When in Coulomb blockade, the conductance of a quanturn dot is very sensitive to nearby 
potentials, for example of another quanturn dot. We used this to monitor the potential of a 
quanturn dot exhibiting Coulomb blockade oscillations, both in zero and nonzero magnetic 
field. We found that the dot potential varies in a sawtooth-like fashion for isolated dots 
(high tunnel barriers). The sawtooth becomes rounded for lower (up to tunnel barriers 
adjusted to P/ze2/h potential fluctuations were seen) tunnel barriers. 
Using a quanturn dot as a voltage probe we showed that the strongly modulated conduc
tance signal is fully due to Coulomb blockade and can not be explained by the Ahronov
Bohm effect. 
In both experiments we found proof for a resonance line broadening that can not be 
explained by bulk temperature. For a bulk temperature of 25 mK we found an effective 
electron temperature of 0.2 K, in agreement with Staring et al. [3]. 
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chapter 1 

Introduetion 

1.1 Preface 

Due to the industrial strive for smaller and faster devices during the last decades, a new 
field of physics is developing, called mesoscopic physics. New physical phenomena have 
been found in devices with typical dimensions of the same order of magnitude as 
physically relevant length scales. Examples of such phenomena are quanturn interference, 
ballistic transport and quanturn confinement; the corresponding length scales are the 
quanturn phase coherence length, the mean free path and the Fermi wavelength, respecti
vely. 
Since these lengtbs exceed atomical and molecular (microscopical) sizes, and are smaller 
then macroscopie sizes, one eaUs them 'mesoscopic'. The devices are commonly called 
'nanostructures'. 

In figure (1.1) three transport regimes are 
shown for electrical transport through a 
wire. In the upper situation, where the 
electron mean free path le is smaller then 
the typical device dimensions, conventio
nal transport, dominated by impurity 
scattering, will occur. In the lower figure, 
where le> W,L, the transport will be 
ballistic and will he dominated by the 
device geometry. Th is regime is nowadays 
mainly achieved in semiconductor structu
res. 
Another effect that occurs at these meso
scopic scales is Coulomb blockade: Due to 
charging effects, transport through a 
region in which a number of electrans are 
confined, becomes impossible. In chapter 
two Coulomb blockade will be discussed 
in more extent. 

I 

~w 

Figure 1.1 Electron trajectories typical for the three 
transport regimes. 
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1.2 The two-dimensional electron gas. 

In this paragraph a short description of the semiconductor material used in our experi
ments will be given. The main physical properties of this two dimensional electron gas 
will also be outlined. In chapter three device structuring and experimental techniques will 
be described. 

(a) (b) energy~ 
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38 nm Alo.33Gaos7As 
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valenee : conduction 
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Figure 1.2 Layers of a modulation doped GaAs-AlxGa1.x heterostructure (a) and the corresponding band
bending diagram (b). The numbers give typical dimensions. 

The structures we used are defined by metallic gates on top of an GaAs-AlxGa1_xAs 
heterostructure. The two-dimensional electron gas (2DEG) is situated in a nearly 
triangular potential well between the AlxGa1_xAs and the GaAs layers, see figure (1.2). 

The heterostructures were grown by Molecular Beam Epitaxy (MBE) at the Philips 
Research Laboratories, Redhili England by C.T. Foxon and have a typical mobility p, of 
about 1 *106 cm2/Vs. The typical sheet carrier concentration n is about 1.8*1011 cm-Z, 
which yields, according to 

(1.1) 

with Vp the Fermi velocity and Y the scattering time, an electron mean free path le =7 
p.m. 
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As a result of the low electron density the Fermi wavelength is large, in the order of 50 
nm. The energy of non-interacting electrans in an unbounded 2DEG is 

E(k) = r?k2 
2m 

(1.2) 

which is isotropie as a function of momenturn hk, parallel to the plane. The effective 
mass min GaAs is m=0.067lllo.The 2D density of states 

(1.3) 

is independent of energy, if there is only one occupied subband, which is usually the 
case. In equilibrium, the states are occupied according to the Fermi-Dirac distribution 

(1.4) 

When a strong magnetic field B is applied perpendicular to the 2DEG, a discrete energy 
spectrum arises, since no free motion parallel to B is possible, unlike in bulk GaAs where 
the energy spectrum exhibits peaks, but does nat become fully discrete. In 2D highly 
degenerated Landau levels are formed at energies 

1 
E =(n--}hw n 2 c 

(1.5) 

where Oc=eB/m 1s the cyclotron frequency and n an integer. The degeneracy of one 
Landau level is 

(1.6) 

which is nat dependent on the electron density. This yields for the number of occupied 
Landau levels 

(1. 7) 

In the modern theory of the quanturn Hall effect, the current carrying states are described 
as edge states that move along equipotentials of the confining potential V(r), for Ep inbe-
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tween two Landau levels, see figure (1.3). Norrnally one Landau level consists of edge 
states and localized states, all with quanturn nurnber n. The localized states do not 
contribute to the conductance. These edge states are the quanturn rnechanical analog of 
the skipping orbits of electrans undergoing repeated specular reflections at the boundary 
(confining potential). 

Figure 1.3 mustration of edge chanels. The arrows point in the direction of motion of the edge states. The 
localized states do not contribute to the conductance. 
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Chapter 2 

Coulomb blockade oscillations 

Since Coulomb blockade is a rather complex phenomena, its description will be done in 
two steps. In the first paragraph of this chapter a qualitative introduetion to Coulomb 
blockade is given. In paragraph 2.2 a more quantitative treatment is presented. 

2.1 Introduetion 

The first experiment in which Coulomb blockade was observed was the resistance 
measurement of films of small metallic grains. These films showed a strong increase in 
resistance at low temperatures, and the explanation given by Gorter [1] in 1951 was that 
transport through a grain might be inhibited at low temperatures due to charging effects. 

x 
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Figure 2.1 (a) Schematic illustration of the system used by Pulton et al. The dashed lines indicate tunnel 
barriers. (b) The charge imbalance between dot and leads. (c) The periodic conductance of a dot. 
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Only in 1987, when lithographic technology had come to a sufficiently high level, this 
hypothesis was verified by an experiment by Pulton et al. [2]. They made a Coulomb 
blockade transistor, exhibiting perioctic oscillations in the conductance as a function of 
gate voltage. 
A schematic lay-out of system used by Pulton et al. is given in figure (2.1). A small 
metallic island, or dot, is weakly coupled to two conducting leads by tunnel junctions. An 
additional gate electrode can be used to control the charge on the dot. The charge on the 
dot is an integer number of conduction electrons, i.e. Q=Ne, with N the number of 
electrons. Using a fixed number of electrans implies that the dot is coupled very weakly 
to the leads, by tunnel conductivities much smaller than the conductance quanturn e2/h. 
When C is the capacitance between dot and nearby charges, for example on the gate, 
these charges induce a displacement charge Ccf>ext on the dot. Minimalisation of the charge 
imbalance Ccf>excNe determines Nat low temperatures, i.e such that kT< <e2/C with e2/C 
the charging energy. In order to fulfil this condition at reachable temperatures, it is 
necessary to make C typically smaller than 10'16P. Structures with such low capacitances 
have lithographical dimensions in the order of 1 p.m or smaller. 
By changing the external potential we can change the charge imbalance on the dot. When, 
while increasing cPext• the charge imbalance becomes more than e/2, an extra electron is 
added to the dot, and Ccf>excNe becomes -e/2. When the condition kT<< e2/C is fulfilled, 
it is in general impossible to add an extra electron to the dot, and electrical transport 
through the dot is impossible. Only when cPext is at certain values, (N + 112)e/C, where the 
charge imbalance is +/- e/2, there is thermodynamica! indifference whether there are N 
or N + 1 electrans on the dot and electrans can tunnel, one by one, through the dot. 

In contrast to the experiment described above, our experi
ments are done on structures defined in semiconductors by 
use of a split gate technique. When a negative voltage is 
applied to metallic top gates, the 2DEG underneath is 
depleted and, for example, a dot, which consists of a few 
to a few hundreds of electrons, is formed, like in figure 
(2.2)c. The dot is coupled to the leads by two point con
tacts, closed beyond the resistance quanturn h/e2

, that 
function as tunnel harriers. 

Since the Permi wavelength is comparable to the dimensi
ons of the dot, the energy spectrum of the electrans may 
no longer be regarded as a continuum, as we implicitly 
assumed for metallic dots. Because this size effect becomes 
important, a dot defined by this means in a 2D EG is often 
called a 'quanturn dot'. In a typical experiment the quan
turn dot contains N """ 100 electrans and the average ener
gy level spacing is .dE """ 0.1 meV, corresponding, via 
kB T =.dE, to a temperature T """ 100 mK. This is the 
reason most experiments are done in a dilution refrigera
tor. 
Other structures exhibiting Coulomb blockade effects are 
shown in figures (2.2)a and b. 

(b)~· 

f.~·~!J-·--~~~~~:.:~:~~.~i )---G!;.~~:1 

Figure 2.2 Schematic top-view of 
three semiconductor nanostructu
res exhibiting Coulomb blockade. 
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The structure shown in a is called a disordered quanturn wire and consists of small 
conducting islands, separated by depleted regions (tunnel harriers). This occurs when a 
wire is almost pinched off by applying a large negative bias on the gates. A considerable 
amount of research has been done on the structures in figure (2.2) during the past few 
years [3], [4]. Recently, theoretica! work on systems consisting of two quanturn dots has 
been done [7], and some experimental results on a lateral double dot structure have been 
reported [17]. Still, interactions between two nearby quanturn dots in a split-gate sample 
had notbeen investigated. That will be the main subject of this report. 

2.2 periodicity 

In this paragraph the periodicity of the conductance of a quanturn dot as a function of an 
external potential will be discussed. Only a short summary of those subjects needed to 
understand the rest of this report will be given. For a more extensive review of Coulomb 
blockade, see [5]. 

I i dot ! 

--r 
+ E, 

~ i ~eV. e<P 
eV 

t 

lal I bi 

Figure 2.3 (a) Schematic diagram of a quanturn dot with tunnel harriers (hatched) and resevoirs. (h) Profile 
of the electrastatic potential energy (solid line) along a line through the tunnel harriers. 

We shall consicter a system as shown in figure (2.3). A confined region, the quanturn dot, 
that is weekly coupled by tunnel harriers to two conducting reservoirs. For the sake of 
simplicity we shall assume that there is no temperature difference across the dot. 
When a small voltage difference V < < ~E is applied between the reservoirs, the 
conductance G of the dot is 

I G=-
V 

(2.1) 

When charging effects are not considered, and T < < ~E/kB, transport through the dot is 
only possible if the Fermi levels in the left and right reservoirs line up with an one
electron level in the dot. This process is called resonant tunnelling. 
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When we do consicter charging effects, this condition will be changed. Since the number 
of electrans on the dot can take on integer val u es only, a charge imbalance or, equiva
lently, an excess potential 4> can arise between the dot and the reservoirs. With Q=Ne the 
charge on the dot, C the capacitance and 4>ext the external potential due to e.g. nearby 
donors or a gate electrode, we can write 

(2.2) 

The electrastatic energy U (N) then becomes 

-Ne 

U(N) = f <I>(Q)dQ = (Ne)2- Ne<l> 
2C ext 

0 

(2.3) 

In order to make transport through the dot possible, it is necessary that the probability to 
find a certain number of electrans in the dot, is nonzero for both N and N + 1 electrans in 
the dot. Then, transport is possible by actding one electron from, e.g. , the left and 
removing it to the right etcetera, so transport takes place via the intermediate states N and 
N + 1. The probability to find N electrans in the dot, in equilibrium with the reservoirs is 
given by the grand canonical distribution function 

[ 
F(N) -NEl 

P(N) =constant x exp F 
kBT 

(2.4) 

with F(N) the free energy of the dot. This distribution function has an infinitesimal width 
at T=O and thus, at T=O, P(N) is generally nonzero for only one value of N, that is the 
N that minimizes the thermadynamie potential 0. 

O.(N) =F(N) -NEF (2.5) 

Thus, in general the conductance G=O at T=O. For T unequal to zero the distribution 
function has a finite width and P(N) can be nonzero for more than one N. For conductan
ce to occur both P(N) and P(N + 1) have to be nonzero, and thus N and N + 1 have to 
minimize 0. A necessary and usually sufficient, unless 0 has more than one minimum, 
what is usually not the case, condition is O(N) =O(N + 1), or 

F(N+ 1)-F(N) =Ep (2.6) 
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At T=O the free energy equals the ground state energy of the dot. This can, simplified, 
be written as 

N 

F(N) = U(N) + L EP (2.7) 

p=l 

Together this yields as a condition for a peak in the low-temperature conductance 

EN+ U(N)- U(N-1) =EF (2.8) 

Th is condition can be fulfilled for any N, so for each N there is a peak in the conductan
ce, yielding a (quasi) periodic conductance spectrum as a function of Fermi energy. By 
substitution of (2.3) for U(N) this gives 

* 1 e2 

EN=EN+(N--)- =EF+e<l>ext 
2 c 

(2.9) 

The EN* are the renormalized energy levels. The renormalized energy level spacing ~~· 
= ~E +e2/C is enhanced above the normal energy level spacing by the charging energy 
e2/C. 
The whole process of transport through a dot in the Coulomb blockade regime is 
summarized in figure (2.4). The energy levels indicated are the renormalized levels. 

Figure 2.4 Single electron tunneling through a quanturn dot. During transport the charge imbalance switches 
between ± e/2. 

Though it is theoretically convenient to vary the Fermi levels in the leads, it is from an 
experimental point of view interesting to consider a variation in the external potential cPext· 
The external potential is caused by nearby ionized donors and one or more gate electra
des. 

<I> ext = <I> donors + ex <I> gate (2.10) 

In figure (2.5) the electrical equivalent of a single quanturn dot is shown. It follows 
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~ c9,"12 

D 

Figure 2.5 Electrical equivalent of a quanturn dot with gates (hatched) and leads (shaded). C=Cdot+Cgate· 

simply that a=Cgate/C with C=Cgate+Cdot· When combined with (2.9) this yields for the 
periodicity in the external gate potential 

e [ ilEN] tl =-- 1+--
<1> gate C 2/C 

gate e 
(2.11) 

In our experiments é/C is about 5 times bigger than ~EN. Only for simplicity we shall 
mostly neglect the second term in (2.11), and assume ~4>gate=e/C8ate· When we take 
cf>gate=V8ate• what is allowedfora dot with wide leads, we find 

e 
ilVgate=c 

gate 
(2.12) 

Not only the conductance of a quanturn dot oscillates as a function of gate voltage, also 
the potential of the dot, relative to the lead potential, oscillates with V8ate· In figure (2.1)b 
the charge imbalance as a function of cf>ext is shown to oscillate between +e/2 and -e/2 in 
a sawtooth-like way. Because V =Q/C for a capacitive system, we find that the relative 
potential of the dot varies between +e/2C and -e/2C in the same sawtooth-like fashion; 
Increasing linearly with increasing V8ate and dropping discontinuously when it is energeti
cally favourable to add an extra electron. 



15 

chapter 3 

Experimental 

The samples used in our experiments were all made out of one piece of AlxGa1_xAs-GaAs 
material (wafer G868D) with a typical mobility of 1 *106 cm2/Vs and an electron density 
of 1.8*1011 cm-2

• 

3.1 Split gate technique and sample production 

The electron gas is shaped by two techniques: (wet) mesa-etching, resulting in a perma
nent removal of the electron gas, and electrastatic depletion by applying a negative bias to 
metallic gates on top of the sample, see figure (3.1). 

t) 

r------ eiectrode .. 

.... 
.------ AlGaAs ._, 

I 
I 
~-t---- potential-

barrier 

.... 

Figure 3.1 A heterostructure with a metalic top gate on top. The electrous in the 2-DEG are depleted by a 
smooth potential harrier. 

The advantage of this split gate technique is that the depletion width is a smooth function 
of the gate voltage and thereafter constrictions with a variabie width can be made, like 
point cantacts and (disordered) quanturn wires. lt, too, gives the opportunity to regulate, 
to a certain extent, the number of electrans in a quanturn dot and thereby changing the 
coupling to nearby potentials, e.g. on gates or of another dot. 
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The first step in the production of a sample is the rnesa etching of a 1 *0.3 rnrn Hall bar 
on top of the heterostructure. Ohrnic contacts are made by alloying Au-Ge-Ni into the 
2DEG at the edges of the Hall bar. Then the coarse parts of the Ti-Au gates are structu
red using a conventional optical lithography. The next step consists of the deposition of 
bonding pads on the ohrnic contacts and on the far endsof gates. 
In the last lithographical step the fine parts of the (nano) structure are made using electron 
bearn lithography. The lithograpbic opening between the split gates defining a tunnel 
harrier is typically 250 nrn. 
The last step is separating the samples frorn another and bonding thern to a socket that 
can be installed in a cryostat. 

3.2 The double dot sample 

In order to gain better insight in electrical transport through arrays of dots and disordered 
quanturn wires, a sample was designed that made it possible to study the interactions 
between two nearby dots, see figure (3.2). 

x x 

Figure 3.2 Schematic lay-out of the double dot sample. The hatched arreas are metalic top gates, the 
crosses denote Ohmic contacts. 

It consists of two dots separated by a split-gate defined tunnel harrier, which gives the 
opportunity to use the sample in the full range between one large dot and two cornpletely 
separated dots. Both separate dots can be rneasured independently of eachother. 
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3.3 Measurement techniques 

All measurements were performed in a Oxford lnstruments dilution refrigerator with a 
base temperature of 20 mK. Unless stated otherwise, all experiments were done at this 
temperature. Magnetic fields up to 10 T could be generated using a built-in superconduc
ting magnet and an Oxford Instruments 2127 power supply. The whole setup, including 
the measurement control computer was installed in a Faraday cage. 220 V AC power 
supply was generated by a separated generator. 
All measurement control was done through a GPIB-interface using 'Asystant' software on 
a HP Veetra ES/12 computer. Constant gate voltages were generated by a Keithley 230 
programmabie voltage souree and a four-channel HP6626A power supply. Gatescans were 
made using a HP 3245A universa! source. 

ac 
voltage 
souree 

reference signa! 

Figure 3.3 Schematic diagram of the measurement circuit. Only the device is at low temperature. The 
whole setup is surraounded by a Faraday cage. 

A standard low frequency ac double lock-in methad was used for most measurements. In 
figure (3.3) the system is schematically shown. A Philips PM 5168 function generator and 
a PM 5180 attenuator supplied the 10 p.V, 10 Hz driving voltage. An EG&G Princeton 
Applied Research model 5204 and a Ortholoc model 9502 lock-in amplifier were used for 
the detection of the sample and reference signals, respectively. 
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chapter 4 

Stochastic Coulomb blockade 

This far, we considered the conductance of a single quanturn dot as a function of gate 
voltage. The situation becomes qualitatively different when a number of dots is placed in 
series, like in a disordered quanturn wire with multiple conductance limiting elements. 
Here, we shall study the most simple case with two dots in series. In our double-dot 
device this means that the central tunnel harrier is adjusted at G = 114 e2/h so two weakly 
connected dots are formed. Other tunnel harriers are also adjusted at 1/4 e2/h if needed 
for conductance and closed otherwise. 
For a more extended review of the stochastic Coulomb blockade theory in paragraph 4.1 
see [6], [7]. 

4.1 Introduetion 

In chapter 2 we found as a condition for nonzero conductivity of a quanturn dot 

e 1 
Vgate = -- (N +-), N =0,±1,±2, .... 

(7gate 2 
(4.1) 

where C0 is the dot-to-gate capacitance. This 1s true for temperatures that are low 
compared to the renormalized energy levels EN*. 

(4.2) 

Hereby we assumed that c/>gate and Vgate are the same, which is allowed for a quanturn dot 
with wide leads. Further, we neglected the one electron energy level spacing. 
When two dots are placed in series, two conditions for Vgate have to be fulfilled. The 
electrical equivalent of such a system is given in figure (4.1). 

If the dots are not identical the conditions for conductance cannot be fulfilled at the same 
time at T=O. For finite temperatures, but kBT< <.6EN*1

•
2

, the conductance,too, is zero in 
generaL The first question to be answered is when such a system does have a nonzero 
conductance as a function of gate voltage. 
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Figure 4.1 Equivalent circuit of a double dot device. The polarisation charges qi are continuous ones. The 
charges on the dots eN1•2 (not shown) are discrete. 

Like in the case of a single dot, we will write down an expression for the electrostatic 
energy U(N1,N2,Ygate), with N1,2 the number of electrons on a dot, and demand that for 
both dots there should be energetica! indifference between Ni and Ni+ 1 to make transport 
through the dot possible. 
Using the semi-classical capacitance model of figure (4.1), the electrostatic energy U can 
be expressed in terms of the polarisation charges q1, .... ,q5 , and the gate potential V gate· 

2 2 2 2 2 
ql q2 q3 +q4 +qs 

U(q1' .... ,qs) =-+- + + Vgate(ql+q2) 
2C1 2C2 2C 

(4.3) 

using the shorthand notation C1, C2 for Cgate,t• Cgate,z and C= 1/3Cdot· Since N1 and N2 are 
integers, the dot can only contain an integer number of electrons, this implies for 
ql, .... ,q5 

q3 +qs -ql = -Nle 

q4 +q2 -qs = -N2e 
(4.4) 

The equilibrium charges qh at given N1, N2, are found from (4.4) and the condition that 
U is at a minimum, or 

au =O · 3 4 s 
' l= ' ' . 

aqi 
(4.5) 

Straigthforward rnathematics gives U as function of the discrete variables N1, N2, and the 
continuous variabie vgate· 
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With coefficients 

(4.7) 

These formulas can be simplified by assuming that the dot-to-gate capacitance is much 
bigger than the dot-to-dot and dot-to-lead capacitance, or 

Applying this assumption to (4.7) and (4.6) leads, in zero order approximation, to 

2 2 
111 Nl 112N2 

U(Nl'N2, Vgate) = 2 + 2 - eVgate(Nl + N2) 

e2 e2 
11 =- 11 =-

1 c ' 2 c 
1 2 

(4.8) 

(4.9) 

At low temperatures, the system favours certain N1, N2, and, like in the case of a single 
dot system, transport is only possible if the system is charge degenerate for both dots. 
This gives two conditions on one parameter, V gate· 

I U(Nl'N2)- U(Nl + l,N2) I ~ kBT 

I U(Nl,N2 + 1)- U(Nl'N2) I ~ kBT 

By inserting ( 4. 9) this can be rewritten to 

These conditions are illustrated in figure (4.2). 

(4.10) 

(4.11) 

At high temperatures these conditions are easily satisfied for all Ygate· At low temperatu
res, figure (4.2)b (kBT< <~1 .~2), this is generally not the case, and, if C/C2 is an 
irrational number, only a few conductance peaks will survive both conditions. This gives 
rise to a conductance spectrum with sparse and irregularly spaeed conductance peaks. 
This is illustrated in figure (4.3), top line. The quasi random spacing is the reason for 
the, in fact misplaced, name stochastic Coulomb blockade. 
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Figure 4.2 The ladder of Vgate values favoring transport through the dots. When two rungs of different 
ladders belang to the same 'thermal' strip, charge easily passes through the system. 
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Figure 4.3 Calculated conductance spectrum at 4 different temperatures. Vg and T are measured in units of 
e/C1 and e2/C2k8 , respectively. C/C2 =0.36. 

For very different C1, C2 and intermediate temperatures 

(4.12) 

the system behaves as if the larger second dot is replaced by a wide lead, that is as if it 
has a continuous energy spectrum. See figure (4.2)b and (4.3), lower line. So for very 
different C1 and C2 it is possible to observe both stochastic and regular Coulomb blockade 
behaviour in the same sample at different temperatures. Numerical simulations by Ruzin 
et al. [7] show that it suffices to have cl and c2 different by a factor two. 
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Until now we assumed that the dot-to-dot capacitance is larger than the dot-ta-lead 
capacitance, condition (4.8). In our experiments however, this is not true. Generally, 
a=Cgate/(Cgate+CdoJ is about 0.25. This does not really change the physics of the 
problem, as can be seen from figure (4.4). 

4.2 Thermal breakdown 

As was concluded in the preceding 
paragraph, the number of conduc
tance peeks surviving conditions 
(4.11) increases with increasing 

5 

4 

'Vl3 
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10 mK 

2.0 -0.2 0 0.2 
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temperature. This is called the ther- Figure 4.4 Numerical simulation of the conductance of a 
mal breakdown of the stochastic double dot device with C«C~>C2 (a) and C»C1,C2 (b). 
Coulomb blockade. How the number 
of surviving peeks depends on temperature can be understood from figure (4.5). 
Starting from (2.9) we can write for the renormalized energy levels of a double dot 
system 

E;,l = E F + e<J> ext 

E;,2 =EF+e<J>ext 

--~k----- -'------....L -1--------'- -------

(4.13) 

Figure 4.5 Thennal breakdown of stochastkal Coulomb blockade. The probability that both energy laders 
line up, within k8T, with the Fermi level in the leads, increases lineary with T. 

This means that at T=O bath renormalized energy levels should line up with the Fermi 
level in the reservoirs to make the conductance nonzero. For finite temperatures bath E*N 
have to lay, in first order approximation, within kB T of the Fermi level for G ;r: 0. This is 
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only true for T < LlE*N.1,2 • So for small T the number of conductance peaks in a certain 
interval of the gate voltage should increase linearly with T. 

4.3 results 

By scanning one gate at a time, C1 and C2 were measured and were found to be 2.4*1o-17 

and 4.3*10-17 F, respectively. This yields a ratio CzfC1 = 1.8, which proved to be 
sufficient to observe both stochastic and regular Coulomb blockade oscillations at 
different temperatures. In figure (4.6) the conductance G of the two dots in series as a 
function of gate voltage is shown for three different temperatures. 
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Figure 4.6 Conductance spectrum of two dots in series at three temperatures. The traces are offset for 
clarity (0, 0.3 and 0.6 é/h). 

At low temperatures most conductance peaks are suppressed, as can be seen in the figure. 
Clearly visible is that the non-suppressed conductance peeks are not spaeed stochastically, 
but in a more or less regular way. This beating-like behaviour is what is to be expected, 
consictering the origin of stochastical Coulomb blockade and the fact that the ratio C2/C1 

is only 1.8. 
The 170 mK trace shows a spectrum with about the same periodicity as the 20 mK trace, 
but with less suppressed peaks. 
At high temperatures (444 mK), only a small effect of the conductance oscillations of the 
bigger dot (dot 2) is visible, as a minor perturbation of the slow oscillations of the 
smaller dot. 
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Figure 4.7 Power spectrum of the traces in tigure 4.6. The arrows indicate the oscillation frequencies of the 
separate dots. 

This picture is confirmed by the Fourier spectrum of these traces, see figure (4.7). The 
conductance signal at 20 mK has its Fourier maximum clearly at fdou, what is to be 
expected since the low-temperature conductance is dominated by the dot that puts the 
heaviest constriction on the conductance. Since cl< c2 and therefore ~E*N 1 > ~E*N 2• dot 

' ' 
1 has the largest energy level spacing with respect to kB T and dominates the conductance. 
The 444 mK Fourier transformed conductance shows that the energy level spectrum of 
dot 2 is not completely thermally smeared, and may thus not be regarded as continuous, 
at this temperature because a relatively high, but narrow, peak at fdot2 is still visible. This 
corresponds to the perturbation of the dominating conductance of dot 1 by dot 2. The 
dominanee of dot 1 is visible in the broad and high peaks around fdou· 

A striking feature of the 20 mK conductance trace is the large number of surviving 
conductance peaks. Because e2/CkB :::::: 4 K, one would, consirlering figures (4.3) and 
(4.4), expect a much smaller number of peaks to be visible. This might be caused by a 
broadening of the energy levels due to electron-gas heating as a result of residual 
electrical noise [3] or an intrinsic broadening of the single electron levels. In chapter 5 we 
will discuss this issue in greater extent. 

In the preceding paragraph we saw that the number of conductance peaks that is visible in 
a certain interval of Ygate should increase linearly with T. For sixteen temperatures, 
ranging from 20 to 500 mK, we made gatescans and counted peaks. 
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The peakcounting was done by computer (In Appendix A the Pascal program is listed). 
Before counting started, all conductance scans were background corrected, and normali
zed on a fixed, for all temperatures equal, maximum conductance 

1 
G norm = fixed ( G experimental - G background) 

Gmax 
(4.14) 

The peakcounting program detects peaks that exceed a certain level, in the range from 0 
to 1. The results of counting with a detection level of 0.6, giving the clearest results, are 
shown in figure ( 4. 8). 
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Fa gure 4.8 Number of measured conductance peaks in a fixed interval of V gate· Only peaks higher than 
0.6*Gm.ax (after background correction) were counted. 

The general feature of the figure is a linear increase of the number of detected peaks with 
T. Only for T > 400 mK a saturation is visible, so one could conclude that 0.4 K is the 
temperature at which the bigger dot becomes unimportant, meaning that the energy level 
spacing is in de same order of magnitude as 2kB T (and not kB T, since a dot becomes 
unimportant when there is always a resonance level within kB T of the Fermi level, what is 
the case if the energy level spacing is 2kBT). This yields via ~E=e2/C a total capacitance 
C of 2*10-15F. Since the Fourier spectrum at 444 mK still shows a clear peak at fdot2• we 
can estimate that the energy level spacing exceeds the thermal energy at this temperature 
by a factor two or more. Staring et al. [3] found in a similar, single, dot a charging 
energy of about 1.5 K. Applying this to our system, that has slightly smaller dots, we 
find C =5*10-16 F. This still is a factor three bigger then can be expected from conven
tional capacitance measurements (C1 =3*10-17F and cx=0.2 yield C=1.5*10-16F, cx=0.2 is 
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reasonable from a geometrical point of view, since the gate is approxemately IA of the 
border of the dot, so a=Cgate/Cdot should be in the same order of magnitude) Maybe this 
effect too is a result of some intrinsic line broadening. 

4.4 Condusion 

In this chapter we presented the first experimental data on stochastical Coulomb blockade, 
and studied its thermal breakdown. We showed that the ratio of gate-to-dot capacities 
C2/C1 = 1. 8 suffices to observe both stochastical and regular Coulomb blockade behaviour 
in the same sample at different temperatures. 
With the aid of Fourier transforms the dominanee at all temperatures of the dot with the 
largest energy level spacing was shown. 
The number of conductance peaks that survives both conditions on Vgate increases linearly 
with T, for small T, as can be expected from a simpte thermal smearing model. 
In order to understand the exact number of surviving conductance peaks, further study to 
the resonance line width is needed, since far more conductance peaks survive than can be 
expected from other experimental data. Furthermore, the biggest dot seems to become 
unimportant at a temperature that is about a factor three smaller than can be understood 
from the energy level spacing. These effects may imply that the resonance levels in a 
quanturn dot are broadened in some way, as has been reported before [3]. As stated in the 
preceding paragraph, this broadening might be caused by electron-gas heating due to 
electric noise or an intrinsic fini te level line width, see also chapter 5. 
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chapter 5 

A quanturn dot as voltage probe 

In chapter two we saw that the conductance of a quanturn dot is strongly dependent on 
nearby potentials, for example on a metallic gate. In the experiments described in this 
chapter we will use this sensitivity to nearby potentials to monitor the potential of a dot 
on the conductance of another dot. 

5.1 Introduetion 

When the first measurements of oscillative behaviour of the conductance of a single 
quanturn dot were reported, there were two main explanations: The Coulomb blockade 
theory, by Likharev and coworkers [5], as presented in chapter two, and the resonant 
tunnelling theory [14]. The latter theory claims that charging effects are unimportant and 
that transport through a dot is possible when the Fermi levels in the leads line up with a 
single electron level in the dot. The conductance oscillations can then be explained as 
being caused by the 'scanning' of these levels by the lifting of the energy band bottorn 
due to a potential on a nearby gate. Though the Coulomb blockade theory is nowadays 
generally accepted as correct, the ultimate prove can be given by measuring the potential 
of the quanturn dot as a function of gate voltage. U nlike the resonant tunnelling theory, 
the Coulomb blockade theory prediets that the potential of a dot should vary in a 
sawtooth-like way as a function of gate voltage. See chapter 2.2 and figure (2.1). To 
measure this potential has been a hard experimental nut, since the voltage probe should be 
non-invasive, in order not to disturb the dot, and extremely sensitive. Recently, indepen
dently of our experiment in which we use a quanturn dot as voltage probe, Field et al. [8] 
used a point contact as a voltage probe. 

During the experiments described in this chapter we closed the central tunnel harrier in 
order to achieve a purely capacitive coupling between both dots. The other tunnel harriers 
were adjusted to G = 114 é/h, so the conductances of both dots could be measured 
independently. In figure (5.1) the equivalent electdeal circuit of this setup is shown. 

From here we shall assume that dot 2 is used as a voltage probe for the potential on dot 
1. Only one gate, gate 1, is scanned, the other gates are kept at a constant voltage. 
In the following section we will discuss the potentials of both dots, Vdou and Vdot2• as a 
function of gate voltage Vgatel· We shall only consider small perturbations on the equilibri
um situation, and thereafter we shall use first-order terms in our calculations only. 
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Figure 5.1 Electrical equivalent of the double dot sample, used to model the use of a quanturn dot (dot 2) as 
a voltage probe for the electrostatical potential of dot 1. 

Starting with the first dot, we find that a small change of gate potential A V gt, induces a 
perturbation charge on the dot Aq1 

(5.1) 

AN is included because AVg1 can cause a change in the number of electrons on the dot. 
With AVdou =Aq1/C1 this yields for the change in potential of dot 1 

(5.2) 

where C1 = Cg1 + Ck + 2C is the total capacitance of dot 1. These two terms account for the 
sawtooth-like oscillations of the potential in the dot, see figure (5.2), top panel. 

The second dot is coupled to Vg1 in two ways; directly via C12, that accounts for the 
capacitive coupling between gate 1 and dot 2, and indirectly via dot 1 and Ck. In an 
analog way as for the first dot, we can derive for the potential of dot 2 

c c (c ) ~v =_____Q~v +~ _g~v +_!!_~N 
dot2 C gl C C gl C 1 

2 2 1 1 

(5.3) 

In figure (5.2), second panel, AVdou is plottedas a function of Vgt· The first term on the 
right is linearly increasing upon increasing Vgt. the second and third term form the 
oscillating part. 
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Figure 5.2 Electrostatical potential of dot 1 (a) and 2 (b) and the resulting conductance of dot 2 (c). Dashed 
lines indicate the situation if dot 1 is not defined, the dotted line guides the eye. 

The conductance of the second dot can be computed using [13] 

(5.4) 

with a a constant. In appendix A a computer program is discussed that calculates Gdot2 as 
a function of Vg1 with given capacitances and temperature. 
Qualitatively the shape of one conductance oscillation of dot 2 can be understood as 
follows. Due to the coupling between both dots, the sawtooth-like potential of dot 1 
(figure (5.2),a) is superimposed on the potential of dot 2 (panel b). Starting at the far left 
in figure (5.2)b (Vg1 =0 V), this means that the potential of dot 2 increases stronger, due 
to charging of dot 1, as Vg1 is increased, with dot 1 'present' (solid curve) as with dot 1 
'not present' (dashed curve). This means that, on the left-hand side of the figure, the 
conductance (panel c), too, increases stronger with dot 1 present. Only when an electron 
is added to dot 1, the potential drops discontinuously and the conductance will drop too. 
At the right-hand side the situation is reversed. 
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Since the coupling between gate 1 and dot 1 is much stronger than the coupling between 
gate 1 and dot 2 (Cg1 > > C12,CJ, many electrans are added to the first dot, before one is 
added to the second, or in other words, in each conductance peak of dot 1, many 
sawteeth are visible. 

5.2 The dot-potential in zero magnetic field 

In figure (5.3) the normalized conductances of dot 1 and 2 are shown as a function of 
scanned gate voltage (Vg1); The lower line shows the normal conductance oscillations of a 
dot in Coulomb blockade, the upper trace is the conductance signal of the voltage
monitoring dot. Very clearly visible are the sawtooth-shaped disturbances due to the 
adding of single electrans to dot 1. Note that these disturbances line up with the peaks in 
the conductance of dot 1, as can be expected since transport through a dot is possible 
when charge degeneracy exists, or in other words, when an electron is added to the dot. 

The simulated conductance in figure (5 .4) (made by the program in appendix A) shows a 
good qualitative agreement with the experimental curve in figure (5.3). 

The parameters in the figure caption that are marked (*) are obtained by experiment and 
are certain within about 20 percent. The other parameters are chosen to yield the 
qualitatively best fit to the curve in figure (5.3). Since there is no geometrical difference 
between both dots, C1 and C2 are defined as being equal. To make contact with the 
preceding chapter and [3], C1 and C2 were made 5*10-16 F. This yields cx=O.l. To obtain 
the right sawtooth-depth, Ck was made 5*10-18 F, what is reasonable, compared to the 
other capacities. 

In order to obtain the right peak width, after the capacitances were set within their 
reasonable ranges, the temperature had to be made 0.2 K, although the bulk temperature 
is only 20 mK. Deviations in this order of magnitude have previously been reported, and 
0.2 K is in agreement with the 0.23 K that is reported in [3] for the 'effective line width'. 
Even when C1 would be increased by a factor two, and the faults due to the linear 
approach and experimental uncertainties are also a factor two, an effective electron 
temperature of about 50 mK would be needed to fit the peak-width. This is still a 
deviation by a factor 2.5 from the bulk temperature of 20 mK, at which all experiments 
are done. Although it is possible to obtain even higher electron temperatures at this bulk 
temperature, due to current heating and the weak electron-phonon interaction at these 
temperatures [9], current heating is not likely to be the cause of this phenomena in our 
experiments, since Vdriving is only lOJ.!.V and the minimum resistance of the dot is about 
250 kOhm. 
Another explanation for the conductance peak width given in the literature [13?] is an 
intrinsic broadening of energy levels due to the finite lifetime of single electron states in 
the dot. An energy level broadening of 100 mK yields via 
with r= 1/lifetime a single electron state lifetime of 0.08 nanoseconds. 
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Figure 5.3 Conductance signals of dot I and 2, with dot 2 as voltage probe. The traces have been offset for 

clarity. 

(5.5) 

Now we have found that a quanturn dot can be used as a sensitive voltage probe, two 
interesting situations can be studied: the transition from one big dot to two smaller dots 
when the central tunnel harrier is being pinched-off and the transition from an electrically 
completely isolated dot to a dot that is strongly coupled to the leads. 
In the latter experiment the dot that is used as voltage probe, dot 2, is kept unchanged 
during the whole experiment, i.e. all five enclosing gates are kept at constant voltages. 
The tunnel harriers that conneet the first dot to the leads are adjusted, by changing the 
bias voltage on the upper and lower left gates, from Rpc = 40k0hm to completely closed. 
At each tunnelharrier hight one or more gatescans of Vg1 were made, see figure (5.5). 
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Figure 5.4 Simulated conductance of a dot as voltage probe. The parameters are: C1,C2 =500 aF, Cg1 =32 
aF(*), C12 =1.7 aF(*), Ct=5.0aF, T=0.2K. 

Clearly visible is that the sawtooth oscillations of the potential in dot 1 become weaker 
when the tunnel harrier hight (- ~c) is decreased. This can be understood in terms of 
discreteness of N 1, the number of electroos in dot 1 , and tunnelling rate r, the ra te at 
which electroos tunnel through a harrier. When the tunnel harrier hight is infinite, r 
becomes zero and N 1 will be the equilibrium number of electroos on the dot, and will not 
be disturbed by transport through the dot, due to second order processes [10], which 
causes the number of electroos to vary between N1 and N1 + 1. Since N1 is sharply defined 
in this case, also the (electrostatical) potential of dot 1 is fully discrete, and a sharp 
discontinuity in the potential can be seen when an extra electron is added to the dot. 
Wh en the tunnel harrier hight is low, the tunnelling rate increases and N 1 will be less 
sharply defined since the number of electroos on the dot will be sometimes N1 and 
sometimes N1 + 1. Thereafter the dot does not fully charge up, and the discontinuities in 
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Figure 5.5 Conductance of a dot as voltage probe at different tunnelbarrier bights of the souree dot. The 
tunnelbarrier hight is denoted as an Ohmic resistance ~· 

the potential become smaller and rounded. Both effects are visible in the figure. 
During the other experiment, the transition from one to two dots, the bias on the middle 
two gates was varied, so the conductance of the middle tunnel harrier was adjusted 
between 0 (at -0.8 V, two separate dots) and 1.5 é/h (-0.725 V, one big dot). The other 
tunnel harriers were adjusted at almost fixed values: the upper and lower left at G=O, the 
upper and lower right at = 115 e2/h. 
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Figure 5.6 Conductance of dot 2 at different hights of the tunnel barrier between both dots, denoted as the 
voltage on the central gates. Vc=-0.8 corresponds to G=O, Vc=-0.725 to G>e2/h. 

In the lower traces of figure (5. 6) the coupling between both dots is seen to increase when 
the central gates become lower biased, what is probably a result of the decreasing 
distance between the dots when the separating tunnel harrier is becoming lower and 
narrower. 
The upper traces of the figure show behaviour that is very familiar or even equal to that 
of a single quanturn dot. Note that the period of the oscillations does not change from the 
lower to the upper trace. 
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5.3 The potential of a quanturn dot in a magnetic field 

When a magnetic field is applied to a quanturn dot edge states are formed, as described in 
chapter two. Dependent on how the tunnel harriers are adjusted, the edge states can be 
localized (figure (5. 7)a) or extended (b). The situation with fully localized states corre
sponds to tunnel harriers with G < e2/h, the situation in panel (b) of the figure corresponds 
to e2/h < G < 2é/h. 

The conductance of a quanturn dot in 
these situations can show a more complex {a) 
structure as a function of gate voltage then 
in absence of a magnetic field, for 
example figure (5.8)b, dashed line. The 
main cause of these phenomena is the 
cyclical (de )population of Landau levels 
[11], [16] as the gate voltage is scanned. 
Cyclical depopulation means that from {b) 
each Landau level one electron is removed 
before a second electron is removed from 
a level. 
After the first experimental results [12] on 
the conductance of quanturn dots in the 
presence of extended edge channels had 
been reported, the complex conductance 
signal was sametimes explained as being 
some sort of Ahronov-Bohm oscillations. 
When this would be the case, the asciila

Figure 5.7 Schematic view of a quanturn dot with (a) 
no extended edge chanels, and (b) with one extended 
and one localized edge chanel. 

tions should not have any influence on the potential of the dot, since Ahronov-Bohm is 
caused by electron interference, and does not cause any potential disturbance. 

We used a magnetic field of 2.6 Tesla, which yielded four populated Landau levels. Dot 
2 was used as voltage probe, with tunnel harriers adjusted at 115 e2/h. The tunnel harriers 
of the 'souree dot', dot 1 were at 1h e2/h or at Ph e2/h, corresponding to zero and one 
extended edge channel. The conductance traces obtained by scanning V gatet are shown in 
figure (5.8)a and b respectively. The poor quality of traces, compared to figures (5.6) and 
(5.7), is due to the fact that another sample had to be used. The dotted line in both 
figures is the derivative of the conductance of dot 2 with respect to the gate voltage and 
was numerically obtained. This derivative proved to be a very sensitive tooi to see if any 
perioctic modulation, in our case caused by the potential of the souree dot, is present on 
the signal. In figure (5. 8)a this is obviously the case, but also in (b) some asciilating 
behaviour of the derivative with the same period as the finest oscillations on Gdou is 
visible. We can therefore conclude that all oscillations in the conductance of dot 1 are 
being caused by potential-influencing processes, i.e. by the removing of electrons, and 
not by the Ahronov-Bohm effect. 
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These results can be regarded as the preparation for a new series of experiments on 
Coulomb blockade in the precence of (partially) transmitted edge channels. Recently, 
interesting theoretica! work has been done by Kinaret et al. [15]. 
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Figure 5.8 Conductance of bath dots in presence of (a) zero and (b) one extended edge ebaneL dG2/dV81 in 
arbitrary units. Gdotl (b) bas been offset -e2/h. 

5.4 Coneinsion 

We have demonstrated that a quanturn dot can be used as a very sens1t1ve non-invasive 
voltage probe for nearby potentials. The influence of these potentials on the conductance 
of the probe-dot can be described using first order approximations in a slightly modifica
ted version of the standard capacitance model for a single quanturn dot. 
We used the probe-dot to show that the electrostatical potential of an isolated (high tunnel 
harriers) quanturn dot does vary in a sawtooth-like way as a function of gate voltage. We 
also found that the measured conductance peak width corresponds to a temperature of 
about 0.5 K, though the bulk temperature is 20 mK. If this effect is due to electron 
heating, intrinsic line broadening or even some other effect cannot be concluded from our 
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experiments. 
Finally, we measured the potential of a quanturn dot in presence of extended edge 
channels, and found that the non-standard conductance oscillations of such a system have 
the same frequency as the modulation of the dot potential, and therefore are probably 
Coulomb blockade oscillations. 
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Appendix A 

Software 

In this section two programs are listed. The first calculates the conductance of a quanturn 
dot when V gate of another nearby dot is scanned, using the formulas of paragraph 5. 1. The 
second counts conductance peaks exceeding a certain hight in a gatescan. 

A.l Program 'Coupling 2 dots' 

The program listed below calculates the conductance of a quanturn dot that is used as a 
voltage probe for another nearby quanturn dot. The schematic setup for such an experi
ment is shown in figure (A 1). 

c c 

Vg2 ---..- V exit 

Figure Al Elecrical equivalent of the double dot sample as used for the simulation of the 
coupling between two dots 

The program steps the gate voltage V g 1 in n _step steps from -V grens to +V grens and 
calculates successively the number of electrons on dot 1 (n1), the potential of dot 2 
(Vdot2) and the conductance of dot 2 (G). Vg1, Vdot2 and G are stored in the result 
array G and saved in b:kopsim2.dat as an ASCII-file. 
Two remarks have to be made with respect to the program. First, the 'number of 
electrons' of dot 1 , n 1 , is defined as 
which is the deviation from the number of electrons on the dot when Vg1 is zero. 
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(A.l) 

Second, the 'potential of dot 2, ,Vdot2, is in fact the electrochemical potential of the dot, 
which increases linearly upon Vgl (at least during one conductance peak) and not the 
electrostatical potential U, which bas a discontinuity at the maximum conductance since 
the number of electrans changes by one at that point. 
The program uses (5.4) 

G h-2( Vdot2) --:::;cos 
Gmax 2.5kBT 

(A.2) 

to calculate the conductance of the dot as a function of Vdot2. 
The conductance calculated with the program and parameters as listed below is shown in 
figure (5.4). 

program koppeling; 
{berekend in een dubbele quanturndot-configuratie de invloed van het scannen 
van dotl m.b.v. Vgatel op de geleiding G van dot 2. In G staan achtereen
volgens Vgl, de bijbehorende potentiaal daardoor in dot2-Vdot2 enG.} 

const 

var 

Cl = 2.0e-16; {totale capaciteit dotl} 
C2 = 2.0e-16; {tatale capaciteit dot2} 
Cgl = 3.2e-17; {periode dotl in Vgatel=e/Cgl} 
Cg2 = 3.3e-17; {periode dot2 in Vgate2=e/Cg2} 
C12 = 1. 7e-18; {koppeling tussen dot2 en gatel, periode=e/Cl2} 
Ck = 5.0e-18; {koppeling tussen dotl en dot2} 
kT = 1.38e-23*0.5; {J} 
e = 1.6e-19; {Q} 
n_step = 200; 
V grens = 0.05; {V. Vgl loopt van- tot +V grens} 
file_out= 'b:\kopsim2.dat'; 

G:array [0 .. n_step, 1. .3] of real; 
nl, i :integer; 
Vgl, Vdot2, E_red :real; 
f:text; 

function cosh(x:real):real; 
begin 

cosh: =(exp(x)+exp(-x))/2; 
end; 



begin 
n1 : = -1 *trunc(Vgrens*(Cglle)); 
for i : = 0 to n_step do 
begin 

Vg1 : = i*(2*Vgrensln_step)-Vgrens; 
ifVg1 > = (n1+1)*(e1Cg1) then n1:=n1+1; 
Vdot2: =(C121C2)*Vg1 + (CkiC2)*((Cgl/C1)*Vg1 - (eiC1)*n1); 

{formula (4. )} 
E_red: =(e*Vdot2)1(2.5*kT); 
G[i,3]: = 1/sqr(cosh(E_red)); 
G[i,1]:=Vg1; 
G[i,2]: =Vdot2; 

end; 
assign (f,file_out); 
rewrite (f); 
for i: =0 to n_step do 
begin 

writeln (f,G[i, 1]:8:6,' I ',G[i,2]:8:6,' I ',G[i,3]:8:6); 
end; 
close (f); 

end. 

A.2 Program 'Peakcount' 
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This program counts the number of conductance peaks that exceed a certain hight. As 
listed, the program normalizes the conductance such that the minimum conductance is 
regarded as background and is substracted, and that the remaining maximum conductance 
is made unity. The results of running this program on the stochastical Coulomb blockade 
scans at different temperatures, as plotted in figure (4.8), were obtained after the follo
wing modification had been made. The -per scan- variabie maximum conductance was 
replaced by an fixed, and for all temperatures equal, maximum conductance, that was 
regarded as unity. 

{$M 32768,0,655360} 
program peekcnt; 

uses crt; 

const 
R_ref=120.78; {kOhm} 
e_over_C= 1.6e-1914.27e-17; {Volt} 
factor=0.5; {mate waarin 2 pieken dichter op elkaar mogen liggen 

dan op grond van eiC te verwachten is, om nog als af
zonderlijk gedetecteerd te worden} 
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nT _ max = 30; {maximum aantal subfile-sets} 
nn _ max = 8; {maximum aantal detectie-ondergrenzen!} 
n col=nn max+3;{T, G min, G max, # grens(1), .. ,# grens(nn max)} 
data_max~1501; {maximaal aantil meetp~nten in een subfile} -

type 

var 

a_2D = array [l..nT_max, l..n_col] of real; 
a data = array [1. .data max, 1. .3] of real; 
a=nn = array [O .. nn_max] of real; {let op: a_nn heeft nn_max+ 1 velden} 
filename = string[79]; 

file_in, file_out :filename; 
f :text; 
n_sf, n_T, i, ii, n_grens, n_data, ofl_of2 :integer; 
result :a_2D; 
x :a_data; 
grens :a_ nn; 
dummy :char; 

procedure input (var file_in, file_out :filename; var n_grens, n_sf, 
n_T, ofl_ot2 :integer;var result :a_2D; var grens : a_nn); 

var 
j : integer; 

begin 
clrscr; 
write(' input filename : '); 
readln(file_in); 
write('output filename : '); 
readln(file _out); 
write('[1] Append of [2] New : '); 
readln( ofl_ of2); 
write('# subfile-sets [bestaande uit x,y,z] : '); 
readln(n_ T); 
n sf := n T*3· - - ' 
for j : = 1 to n _ T do 
begin 

write ('temperatuur horende bij ',j,'e subfile-set [K] : '); 
readln (result[j, 1]); 

end; 
write('# detectie-ondergrenzen : '); 
readln( n_grens); 
grens[O]: = 1. 001; {nodig voor n _peek procedure} 

writeln('De detectie-ondergrenzen moeten in aflopende volgorde'); 
writeln(' ingevoerd worden!'); 

for j: = 1 to n_grens do 



begin 
write(j,'e detectie-ondergrens [relatief:Gmin=O, Gmax= 1] : '); 
readln(grens[j]); 

end; 
end; 

procedure data_in (var f:text; n_data:integer; var x :a_data); 
{leest 3 arrays uit file_ in in en stopt ze in x. De data file moet reeds ge
opend zijn. Tussen de data moet alleen een spatie staan. Na elke subfile 
moet een <CR> staan.} 

var 
j ,k :integer; 

begin 
for j : = 1 to 3 do 
begin 

readln(f); 
for k: = 1 to n data do 
begin 

read(f,x[k,j]); 
end; 

end; 
end; 

procedure result_ out( file_ out: filename; n _grens, n _ T, ofl_ of2 :integer; 
result:a_2D); 
var 

f:text; 
j ,k :integer; 

begin 
assign(f,file_ out); 
if ofl_of2=1 then append(f) else 
rewrite(f); 
for j : = 1 to n _ T do 
begin 

for k : = 1 to n_grens+2 do 
begin 

end; 

write(f,result[j ,k]: 8:4); 
write(f,', '); 

write(f,result[j ,n _grens+ 3]: 8:4); 
writeln(f); 

end; 
close (f); 

end; 

procedure G_minmax(x :a_data; n_data,i :integer ;var result:a_2D); 
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var 
j :integer; 
G, G_min, G_max :real; 

begin 
G_max: =x[1,3]/x[1,2]; G_min: =G_max; 
for j : = 1 to n_data do 
begin 

G: = x[j,3]/x[j,2]; 
if G > G max then G max: =G else - -

ifG<G_min then G_min:=G; 
end; 
result[i,2]: =G_min; result[i,3]: =G_max; 

end; 

function G_e2h (G_ratio:real):real; 
begin 

G _ e2h : = G _ratio/R _ref/ 1 0*25. 812; 
end; 

function afstand_ok (V1_oud,V2 _oud,V1_ nieuw, V2_nieuw:real):boolean; 
{kijkt of 2 pieken niet veel dichter op elkaar liggen dan op grond van 
Cgate te verwachten is.} 
var 

afstand :real; 
begin 

end; 

afstand: =abs(0.5*(V2_oud+ V1_oud) - 0.5*(V2_nieuw+ V1_nieuw)); 
if afstand> factor*e over C then afstand ok: =true - - -

else afstand_ok: =false; 

procedure grenstransfarm (grens: a_nn; var grens2 :a_nn; result :a_2D; 
n _grens, i: integer); 

var 
j:integer; 

begin 

end; 

for j: =0 to n_grens do 
begin 

grens2[j]: = result[i,2] +grens [i] *(result[i,3]-result[i,2]); 
end; 

procedure n_peek (x:a_data; n_data, n_grens, i:integer; grens:a_nn; var result: 
a_2D); 

{bepaalt het aantal pieken dat boven een bepaalde grens ligt. Het aantal 
pieken boven grensG) = aantal pieken dat eindigt tussen grens(j) en 
grens(j-1) + aantal pieken dat boven grens(j-1) eindigt. Dit aantal 



staat in som.} 
var 

j,k, som, aantal :integer; 
V1_oud,V2_oud,V1_nieuw,V2_nieuw,G,G_top :real; 
grens2 :a_ nn; 

begin 
som:=O; 
grenstransform(grens,grens2,result, n_grens, i); 
for j: = 1 to n_grens do 
begin 

aantal: =0; k: = 1; 
V1_oud: =O;V2_oud: =O;V1_nieuw: =O;V2_nieuw: =0; 
G: =x[1 ,3]/x[1 ,2]; 
while k < n data do 
begin 

G_top: =0; 
while (k<n_data) and (G<grens2[j]) do {zoek begin piek} 
begin 

k: =k+ 1; G: =x[k,3]/x[k,2]; 
end; 
V1_nieuw: =x[k, 1]; {hebbes} 
while (k < n_data) and (G > =grens2[j]) do {zoek einde piek} 
begin 

end; 

if G > G_top then G_top: =G; 
k: =k+ 1; G: =x[k,3]/x[k,2]; 

V2_nieuw: =x[k, 1]; {hebbes} 
if (G_top<grens2[j-1]) and (afstand_ok(V1_oud,V2_oud,V1_nieuw, 
V2_nieuw)) then 
begin {de piek voldoet aan alle eisen} 

aantal: =aantal+ 1; 
V1_oud: =V1_nieuw; V2_oud: =V2_nieuw; 

end 
else {de piek is of ruis of al gedetecteerd} 
begin 

if not( afstand_ ok(V 1_ oud, V2 _oud, V 1_ nieuw, V2 _nieuw)) then 
begin {ruis dus} 

end 

V2_oud: =V2_nieuw; {zo worden door ruis gespleten 
pieken als geheel geteld.} 

else {geen ruis, dus is reeds geteld} 
begin 

V1_oud: =V1_nieuw; V2_oud: =V2_nieuw; 
{als de piek geen ruis was, is hij door de vorige 
grens al gedetecteerd. Hij wordt dan niet geteld 
maar wel als echt beschouwd.} 

end; 
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end; 
end; {op naar de volgende piek} 
if G_top < grens2[j] then aantal: =aantal-I; 
{kijken of eindpunt niet onterecht als piek is geteld tgv niet 
voldoen aan eis k < n _data} 
som: =som+aantal; result[i,j +3]: =som; 
writeln('grens ',grens[j]:5:3,' aantal: ',aantal:3,' totaal: ' 
,result[i,j + 3]:3:0); 

end; {en op naar de volgende grens} 
end; 

begin 
input(file_in, file_out,n_grens, n_sf,n_T, ofl_of2, result, grens); 
assign(f,file _in); 
reset (t); 
write('aantal data in een subfile: ');readln(n_data); 
for i : = 1 to n T do 
begin 

{ write('aantal data in 1 subfile voor sf ',(i*3-2),' -' ,i*3,': '); 

end. 

readln (n_data);}{Als niet allesfzelfde n_data hebben deze invoer 
regel gebruiken, anders bovenstaande} 
data_in(f, n_data,x); 
G_minmax(x, n_data, i, result); 
writeln('subfiles ',i*3-2, '-' ,i*3,', T= ',result[i, 1]:5:3,' K'); 
writeln('G_min = ',G_e2h(result[i,2]):7:5,' e ... 2/h'); 
writeln('G_max = ',G_e2h(result[i,3]):7:5,' e ... 2/h'); 
n_peek(x, n_data, n_grens, i, grens, result); 

end; 
close (t); 
result_out(file_out, n_grens, n_T, ofl_of2, result); 
writeln('druk op een toets om verder te gaan'); 
dummy: =readkey; 
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Appendix B 

DC-Current amplifier 

B.l Electrical circuit 

To be able to do sensitive DC measurements, for example to measure Coulomb stairca
ses, we built a current amplifier based on a design made in Delft University of Technolo
gy. Though the group De Mooij is very content with this op-amp design, we we re until 
now unable to do successful measurements with it, probably due to the samples and not to 
the op-amp. 

+9V 
lOkOhm 

2200hm 

I nF 
I muF Vou! 

-9 V 

Figure B.l Electrical circuit of the DC-current amplifier. 

The amplifier is very sensitive to AC-signals, for example digital noise from the HP 
universa! source. When used with un-clean driving voltages, a RC filter with a RC time 
of 0.1 sec or more is strongly advisable. 
Another problem of the amplifier is its sensitivity to earth-loops. When switched to 
'floating' the complete circuit is disconnected from the grounded case. In this mode of 
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operation there should always be another grounding-point in the circuit, to prevent sample 
damage as a result of charging-up of the whole circuit! When switched to 'ground', the 
circuit is connected to the case. In this mode of operation the inverting input channel of 
the OPA111 is a (virtual) earth point. All other connections to earth should be avoided in 
this situation. 
Two last tips for operation: Always twist the connecting wires and don't move near the 
opamp during measurements. 

The amplifier is based on the Burr-Brown OPA111AM operational amplifier. The 
amplification factor is given by the general op-amp relation 

Vuit = R */sample 

where R is the resistance between the output and inverting input channel and !sample the 
current through the sample. For our op-amp this gives amplification factors of 107 to 109

• 

The capacitances parallel to these resistances are used to filter out AC signals. 
Directly behind the driving voltage input a divider (factor 100) is placed, to make the use 
of non-precision voltage sourees possible. 
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