32 research outputs found

    The Virtual Teacher (VT) Paradigm: Learning New Patterns of Interpersonal Coordination Using the Human Dynamic Clamp

    Get PDF
    The Virtual Teacher paradigm, a version of the Human Dynamic Clamp (HDC), is introduced into studies of learning patterns of inter-personal coordination. Combining mathematical modeling and experimentation, we investigate how the HDC may be used as a Virtual Teacher (VT) to help humans co-produce and internalize new inter-personal coordination pattern(s). Human learners produced rhythmic finger movements whilst observing a computer-driven avatar, animated by dynamic equations stemming from the well-established Haken-Kelso-Bunz (1985) and Schöner-Kelso (1988) models of coordination. We demonstrate that the VT is successful in shifting the pattern co-produced by the VT-human system toward any value (Experiment 1) and that the VT can help humans learn unstable relative phasing patterns (Experiment 2). Using transfer entropy, we find that information flow from one partner to the other increases when VT-human coordination loses stability. This suggests that variable joint performance may actually facilitate interaction, and in the long run learning. VT appears to be a promising tool for exploring basic learning processes involved in social interaction, unraveling the dynamics of information flow between interacting partners, and providing possible rehabilitation opportunities

    Dynamic Emotional and Neural Responses to Music Depend on Performance Expression and Listener Experience

    Get PDF
    Apart from its natural relevance to cognition, music provides a window into the intimate relationships between production, perception, experience, and emotion. Here, emotional responses and neural activity were observed as they evolved together with stimulus parameters over several minutes. Participants listened to a skilled music performance that included the natural fluctuations in timing and sound intensity that musicians use to evoke emotional responses. A mechanical performance of the same piece served as a control. Before and after fMRI scanning, participants reported real-time emotional responses on a 2-dimensional rating scale (arousal and valence) as they listened to each performance. During fMRI scanning, participants listened without reporting emotional responses. Limbic and paralimbic brain areas responded to the expressive dynamics of human music performance, and both emotion and reward related activations during music listening were dependent upon musical training. Moreover, dynamic changes in timing predicted ratings of emotional arousal, as well as real-time changes in neural activity. BOLD signal changes correlated with expressive timing fluctuations in cortical and subcortical motor areas consistent with pulse perception, and in a network consistent with the human mirror neuron system. These findings show that expressive music performance evokes emotion and reward related neural activations, and that music's affective impact on the brains of listeners is altered by musical training. Our observations are consistent with the idea that music performance evokes an emotional response through a form of empathy that is based, at least in part, on the perception of movement and on violations of pulse-based temporal expectancies

    Comparing unilateral and bilateral upper limb training: The ULTRA-stroke program design

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>About 80% of all stroke survivors have an upper limb paresis immediately after stroke, only about a third of whom (30 to 40%) regain some dexterity within six months following conventional treatment programs. Of late, however, two recently developed interventions - constraint-induced movement therapy (CIMT) and bilateral arm training with rhythmic auditory cueing (BATRAC) - have shown promising results in the treatment of upper limb paresis in chronic stroke patients. The ULTRA-stroke (acronym for Upper Limb TRaining After stroke) program was conceived to assess the effectiveness of these interventions in subacute stroke patients and to examine how the observed changes in sensori-motor functioning relate to changes in stroke recovery mechanisms associated with peripheral stiffness, interlimb interactions, and cortical inter- and intrahemispheric networks. The present paper describes the design of this single-blinded randomized clinical trial (RCT), which has recently started and will take several years to complete.</p> <p>Methods/Design</p> <p>Sixty patients with a first ever stroke will be recruited. Patients will be stratified in terms of their remaining motor ability at the distal part of the arm (i.e., wrist and finger movements) and randomized over three intervention groups receiving modified CIMT, modified BATRAC, or an equally intensive (i.e., dose-matched) conventional treatment program for 6 weeks. Primary outcome variable is the score on the Action Research Arm test (ARAT), which will be assessed before, directly after, and 6 weeks after the intervention. During those test sessions all patients will also undergo measurements aimed at investigating the associated recovery mechanisms using haptic robots and magneto-encephalography (MEG).</p> <p>Discussion</p> <p>ULTRA-stroke is a 3-year translational research program which aims (1) to assess the relative effectiveness of the three interventions, on a group level but also as a function of patient characteristics, and (2) to delineate the functional and neurophysiological changes that are induced by those interventions.</p> <p>The outcome on the ARAT together with information about changes in the associated mechanisms will provide a better understanding of how specific therapies influence neurobiological changes, and which post-stroke conditions lend themselves to specific treatments.</p> <p>Trial Registration</p> <p>The ULTRA-stroke program is registered at the Netherlands Trial Register (NTR, <url>http://www.trialregister.nl</url>, number NTR1665).</p

    Comprehensive Anatomy of the Brain

    No full text

    Cognitive Economics: Minds and Markets as Complex Systems

    No full text
    This article reviews cognitive economics—an emerging interdisciplinary field that uses the tools of cognitive science to study economic and social decision-making. Despite its eclecticism, Cognitive Economics shares several intellectual commitments: (i) Conceptualizing minds and markets each as complex adaptive systems; (ii) Bridging cognitive, behavioral, and systems levels of analysis; and (iii) Embracing interdisciplinary approaches, including social sciences beyond the traditional scope of cognitive science. We describe three ongoing research programs that strive toward these goals: (i) The study of narratives as a cognitive and social representation used to guide decision-making; (ii) The use of cognitively informed agent based models; and (iii) Understanding markets as an extended mind, analyzed using the concepts, methods, and tools of Coordination Dynamics

    Introduction

    No full text

    Journeys in Non-Classical Computation I: A Grand Challenge for computing research

    Get PDF
    A gateway event is a change to a system that leads to the possibility of huge increases in kinds and levels of complexity. It opens up a whole new kind of phase space to the systemÕs dynamics. Gateway events during evolution of life on earth include the appearance of eukaryotes (organisms with a cell nucleus), an oxygen atmosphere, multi-cellular organisms and grass. Gateway events during the development of mathematics include each invention of a new class of numbers (negative, irrational, imaginary, ...), and dropping Euclid's parallel postulate. A gateway event produces a profound and fundamental change to the system: Once through the gateway, life is never the same again. We are currently poised on the threshold of a significant gateway event in computation: That of breaking free from many of our current Òclassical computationalÓ assumptions. Our Grand Challenge for computer science is to journey through the gateway event obtained by breaking our current classical computational assumptions, and thereby develop a mature science of Non-Classical Computatio
    corecore