11,470 research outputs found
Mean Field Dynamics in Non-Abelian Plasmas from Classical Transport Theory
Based on classical transport theory, we present a general set of covariant
equations describing the dynamics of mean fields and their statistical
fluctuations in a non-Abelian plasma in or out-of-equilibrium. A procedure to
obtain the collision integrals for the Boltzmann equation from the microscopic
theory is described. As an application, we study a hot non-Abelian plasma close
to equilibrium, where the fluctuations are integrated out explicitly. For soft
fields, and at logarithmic accuracy, we obtain B\"odeker's effective theory.Comment: 4 pages, revtex, no figures. Typo removed, a reference updated,
version as to appear in Phys. Rev. Let
Organizational learning and emotion: constructing collective meaning in support of strategic themes
Missing in the organizational learning literature is an integrative framework that reflects the emotional as well as the cognitive dynamics involved. Here, we take a step in this direction by focusing in depth over time (five years) on a selected organization which manufactures electronic equipment for the office industry. Drawing on personal construct theory, we define organizational learning as the collective re-construal of meaning in the direction of strategically significant themes. We suggest that emotions arise as members reflect on progress or lack of progress in achieving organizational learning. Our evidence suggests that invalidation – where organizational learning fails to correspond with expectations – gives rise to anxiety and frustration, while validation – where organizational learning is aligned with or exceeds expectations – evokes comfort or excitement. Our work aims to capture the key emotions involved as organizational learning proceeds
Identification of a non-purple tartrate-resistant acid phosphatase: an evolutionary link to Ser/Thr protein phosphatases?
BACKGROUND Tartrate-resistant acid phosphatases (TRAcPs), also known as purple acid phosphatases (PAPs), are a family of binuclear metallohydrolases that have been identified in plants, animals and fungi. The human enzyme is a major histochemical marker for the diagnosis of bone-related diseases. TRAcPs can occur as a small form possessing only the ~35 kDa catalytic domain, or a larger ~55 kDa form possessing both a catalytic domain and an additional N-terminal domain of unknown function. Due to its role in bone resorption the 35 kDa TRAcP has become a promising target for the development of anti-osteoporotic chemotherapeutics. FINDINGS A new human gene product encoding a metallohydrolase distantly related to the ~55 kDa plant TRAcP was identified and characterised. The gene product is found in a number of animal species, and is present in all tissues sampled by the RIKEN mouse transcriptome project. Construction of a homology model illustrated that six of the seven metal-coordinating ligands in the active site are identical to that observed in the TRAcP family. However, the tyrosine ligand associated with the charge transfer transition and purple color of TRAcPs is replaced by a histidine. CONCLUSION The gene product identified here may represent an evolutionary link between TRAcPs and Ser/Thr protein phosphatases. Its biological function is currently unknown but is unlikely to be associated with bone metabolism.This work was funded by the Royal Society of Tropical Medicine and Hygiene through a Dennis Burkitt Fellowship to JJM. ARD is supported by the Economic and Social Research Council. JJM is supported by a Wellcome Trust Research Training Fellowship (GR074833MA)
Ab-initio-calculations of the GMR-effect in Fe/V multilayers
In a self-consistent semi-empirical numerical approach based on
ab-initio-calculations for small samples, we evaluate the GMR effect for
disordered (001)-(3--Fe/3--V) multilayers by means of a Kubo
formalism. We consider four different types of disorder arrangements: In case
(i) and (ii), the disorder consists in the random interchange of some Fe and V
atoms, respectively, at interface layers; in case (iii) in the formation of
small groups of three substitutional Fe atoms in a V interface layer and a
similar V group in a Fe layer at a different interface; and for case (iv) in
the substitution of some V atoms in the innermost V layers by Fe. For cases (i)
and (ii), depending on the distribution of the impurities, the GMR effect is
enhanced or reduced by increasing disorder, in case (iii) the GMR effect is
highest, whereas finally, in case (iv), a negative GMR is obtained (''inverse
GMR'').Comment: LaTex, 30 pages, including 16 drawings; to appear in JMM
Software fault-tolerance by design diversity DEDIX: A tool for experiments
The use of multiple versions of a computer program, independently designed from a common specification, to reduce the effects of an error is discussed. If these versions are designed by independent programming teams, it is expected that a fault in one version will not have the same behavior as any fault in the other versions. Since the errors in the output of the versions are different and uncorrelated, it is possible to run the versions concurrently, cross-check their results at prespecified points, and mask errors. A DEsign DIversity eXperiments (DEDIX) testbed was implemented to study the influence of common mode errors which can result in a failure of the entire system. The layered design of DEDIX and its decision algorithm are described
Detecting and Studying in the MSSM: Implications of Supersymmetric Decays and Discriminating GUT Scenarios
We demonstrate that supersymmetric decays, as typified by the predictions of
several GUT-scale boundary condition choices, do not prevent detection of , at a TeV or collider operating
at anticipated luminosity. For much of parameter space the relative branching
ratios for various SUSY and non-SUSY decays can be measured with sufficient
accuracy that different GUT-scale boundary condition choices can be
distinguished from one another at a very high confidence level.Comment: 54 pages, full postscript file also available via anonymous ftp at
ftp://ucdhep.ucdavis.edu/gunion/pair.p
Сравнение расхода топлива и уровня выбросов при обычной и гибридных конфигурациях трансмиссий c учетом циклов движения и степени гибридизации
Hybrid electric powertrains in automotive applications aim to improve emissions and fuel economy with respect to conventional internal combustion engine vehicles. Variety of design scenarios need to be addressed in designing a hybrid electric vehicle to achieve desired design objectives such as fuel consumption and exhaust gas emissions. The work in this paper presents an analysis of the design objectives for an automobile powertrain with respect to different design scenarios, i. e. target drive cycle and degree of hybridization. Toward these ends, four powertrain configuration models (i. e. internal combustion engine, series, parallel and complex hybrid powertrain configurations) of a small vehicle (motorized three-wheeler) are developed using Model Advisor software and simulated with varied drive cycles and degrees of hybridization. Firstly, the impact of vehicle power control strategy and operational characteristics of the different powertrain configurations are investigated with respect to exhaust gas emissions and fuel consumption. Secondly, the drive cycles are scaled according to kinetic intensity and the relationship between fuel consumption and drive cycles is assessed. Thirdly, three fuel consumption models are developed so that fuel consumption values for a real-world drive cycle may be predicted in regard to each powertrain configuration. The results show that when compared with a conventional powertrain fuel consumption is lower in hybrid vehicles. This work led to the surprisingly result showing higher CO emission levels with hybrid vehicles. Furthermore, fuel consumption of all four powertrains showed a strong correlation with kinetic intensity values of selected drive cycles. It was found that with varied drive cycles the average fuel advantage for each was: series 23 %, parallel 21 %, and complex hybrids 33 %, compared to an IC engine powertrain. The study reveals that performance of hybrid configurations vary significantly with drive cycle and degree of hybridization. The paper also suggests future areas of study
Duration of untreated eating disorder and relationship to outcomes: A systematic review of the literature
Objective: This systematic review assesses the average duration of untreated eating disorder (DUED) in help‐seeking populations at the time of first eating disorder (ED) treatment and investigates the relationship between DUED and symptom severity/clinical outcomes. /
Method: PRISMA guidelines were followed throughout. Selected studies provided information on either: (i) length of DUED, (ii) components of DUED, (iii) cross‐sectional associations between DUED and symptom severity, (iv) associations between DUED and clinical outcomes, or (v) experimental manipulation of DUED. Study quality was assessed. /
Results: Fourteen studies from seven countries were included. Across studies, average DUED weighted by sample size was 29.9 months for anorexia nervosa, 53.0 months for bulimia nervosa and 67.4 months for binge eating disorder. A younger age at time of first treatment was indicative of shorter DUED. Retrospective studies suggest that a shorter DUED may be related to a greater likelihood of remission. Manipulation of DUED by shortening service‐related delays may improve clinical outcomes. /
Conclusions: Data on length of DUED provide a benchmark for early intervention in EDs. Preliminary evidence suggests DUED may be a modifiable factor influencing outcomes in EDs. To accurately determine the role of DUED, definition and measurement must be uniformly operationalised
A poke in the eye: Inhibiting HIV-1 protease through its flap-recognition pocket
A novel mechanism of inhibiting HIV-1 protease (HIVp) is presented. Using computational solvent mapping to identify complementary interactions and the Multiple Protein Structure method to incorporate protein flexibility, we generated a receptor-based pharmacophore model of the flexible flap region of the semiopen, apo state of HIVp. Complementary interactions were consistently observed at the base of the flap, only within a cleft with a specific structural role. In the closed, bound state of HIVp, each flap tip docks against the opposite monomer, occupying this cleft. This flap-recognition site is filled by the protein and cannot be identified using traditional approaches based on bound, closed structures. Virtual screening and dynamics simulations show how small molecules can be identified to complement this cleft. Subsequent experimental testing confirms inhibitory activity of this new class of inhibitor. This may be the first new inhibitor class for HIVp since dimerization inhibitors were introduced 17 years ago. © 2008 Wiley Periodicals, Inc. Biopolymers 89: 643–652, 2008. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at [email protected] Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/58588/1/20993_ftp.pd
- …